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PROBLEMS

J.P. MCCARTHY

Problems

We will ease into things with a problem from your erstwhile contributor, a version of
which the previous editor felt was on the easy side, making it perhaps suitable for
inviting undergraduates to engage with:

Problem 94.1. Let X, Y be independent and identically distributed random variables
with values in a finite groupG. LetH < G be a subgroup such that P[X ∈ H] ∈ (1/2, 1).
Prove that

P[XY ∈ H] < P[X ∈ H].

More meatier group theory, this time courtesy of Des MacHale of University College
Cork:

Problem 94.2. If G is a group with centre Z and |G/Z| = n!, for some integer n > 1,
show that G/Z is non-abelian.

The problem is stated for not-necessarily-finite groups, but solutions in the finite case
are welcome. On the other hand, Des MacHale invites you to consider the following
problem: for which numbers other than n! does this result hold?

The following problem was provided by Anthony O’Farrell (Maynooth University) and
Maria Roginskaya (Chalmers University of Technology):

Problem 94.3. A very large number of prizes are available for children at a big party
thrown by a billionaire. The prizes are numbered 1, 2, 3, . . . , and are to be shared
between a boy and a girl. Each boy at the party is given a card with a number in 1,
2, 3, . . . , different for each boy, and the same is done for each girl, but it is possible
that a boy will have the same number as some girl. There are m boys and n girls. A
number d ≥ 1 is specified, and this determines the rule for the allocation of prizes, as
follows. The prize labelled p is allocated to the first boy-girl partnership who present
cards labelled a and b, where a + b = p, and where a differs from b by no more than
d. Having claimed a prize with some girl, a boy is free to claim others with other girls,
and similarly for girls. Thus, as the party progresses, the children will repeatedly pair
up and claim prizes, until all the prizes that can possibly be claimed are taken. Show
that the number of prizes that can be claimed is less than 13

√
mnd.

The following hint is provided: let k be a nonnegative integer, and use induction
on k to get the best inequality you can for the number of prizes under the additional
assumption that mn ≤ 2k · d.
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Solutions

Here are solutions to the problems from Bulletin Number 92.

The first problem was solved by the North Kildare Mathematics Problem Club, and
the proposer, Des MacHale of University College Cork. We present the solution of
Problem Club.

Problem 92.1 . Show that the infinite cyclic group is not the full automorphism group
of any group.

Solution 92.1. Suppose Aut(G) is cyclic. Then so is the subgroup of inner automor-
phisms, which is isomorphic to G/Z (where Z is the centre of G). Let kZ generate
G/Z. For g, h ∈ G choose m,n ∈ N and z, w ∈ Z with g = kmz and h = knw. Then

gh = kmzknw = km+nzw = km+nwz = hg.

Therefore G = Z.

Since G is abelian, τ : g 7→ g−1 is an automorphism of G, and τ2 = 1. If we suppose,
in addition, that Aut(G) is infinite or of finite odd order, then τ = 1, i.e. each element
of g has g2 = 1. Thus G is a vector space over Z2. Each permutation of a basis of G over
Z2 gives an automorphism of G. At dimension greater than two, these permutations
give non-commuting elements in Aut(G). At dimension two Aut(Z2 × Z2) = S3. It
follows that G has dimension at most one. But then Aut(Z2) is trivial, not infinite
cyclic. �

The Problem Club leaves an aside: the proposer also posed the question of determin-
ing which finite cyclic groups could be Aut(G) for some group G.

The infinite cyclic group has the cyclic group of order two as its automorphism group.
We have already seen that Zn is never Aut(G) if n > 1 and n is odd.

If G is cyclic of order m, then Aut(G) is isomorphic to the multiplicative group of
the ring of integers modulo m, and the order of Aut(G) is φ(m). This group is cyclic
if and only if φ(m) is a product of distinct primes, so if and only if m is a prime power
pk, and (p − 1)pk−1 is a product of distinct primes. Thus, whenever p is prime and
p−1 is square-free we have two groups Zp and Zp2 with cyclic automorphism groups, of

respective orders p−1 and p2−p. The first few orders of Aut(G) that arise this way are
1, 2, 6, 10, 22, 30, and 2, 6, 42, 110, 486, 930 (resulting from the primes 2, 3, 7, 11, 23, 31).

For an abelian product group G × H, the automorphism group contains Aut(G) ×
Aut(H), and hence has at least two non-trivial involutions and is not cyclic, unless
Aut(G) or Aut(H) is trivial. Thus the only finitely-generated abelian groups G with
cyclic Aut(G) are the cyclic examples just described, and their products with groups
having only the identity automorphism..

It remains to consider abelian G that are not finitely-generated.
Suppose n > 0, that Z2n is isomorphic to Aut(G), and let σ generate Aut(G). We

know that G is abelian, so τ : g 7→ g−1 is an automorphism. There are two possibilities:
Case 1: τ = 1. Then as before, G has dimension at most one over Z2, so Aut(G) is

trivial, a contradiction.
Case 2: τ 6= 1. Then σn = τ . Replacing G by its quotient by the subgroup fixed by

Aut(G), we may assume that each element of G except 1 is moved by some automor-
phism, and hence is moved by σ. So each nonzero element g ∈ G moves in a cycle of
order α(g) dividing 2n, under the action of Z2n. Let

β = lcm{α(g) : g ∈ G}.
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Then β|2n and σβ = 1, so β = 2n. We can choose a finite number of elements g1,. . .,gm
such that

2n = lcm{α(g1), . . . , α(gm)}.
Let H = 〈g1, . . . , gm〉. Then H is finitely-generated, and invariant under σ, and σ|H
has order 2n. If σ|H generates Aut(H), we have seen that 2n = p or 2n = p2 − p for
some prime p such that p− 1 is square-free.

But does every automorphism of H extend to an automorphism of G?

The second problem was solved by the North Kildare Mathematics Problem Club,
and the proposer Andrei Zabolotskii of the Open University. We provide the solution
of the Problem Club.

Problem 92.2 . Let A be a symmetric square matrix of even order over the ring of
integers modulo 2. Suppose that all entries on the leading diagonal of A are 0. Let B
be the square matrix obtained from A by replacing each 0 entry with 1 and replacing
each 1 entry with 0. Prove that detA = detB.

Solution 92.2. First note that x2 = x for x in Z2. Also +1 = −1, so the sign of a
permutation is 1 in Z2. Now let A = [aij ] be a symmetric 2n × 2n matrix, entries in
Z2, zero on the diagonal.

So det(A) is the sum
a1,σ(1) × · · · × a2n,σ(2n)

where σ ranges over all permutations of 1, .., 2n. As aij = aji, we can cancel such a
term with that arising from σ−1, when σ 6= σ−1. Thus only permutations that are
involutions can survive. Also we can remove terms from involutions which fix one or
more points (as they involve a diagonal entry in A). Finally, each term aij will be
matched by aji = aij . So their product can be recorded as aij .

Thus
det(A) =

∑

ai1,i2 × · · · × ai2n−1,i2n ,

where {i1, i2}, {i3, i4}, . . . {i2n−1, i2n} ranges over all partitions of the set {1, 2, .., 2n}
into two-element subsets. There are (2n)!/(2nn!) such partitions, an odd number.

Let J be the all 1’s matrix. We need to compare det(A) with det(A+ J). Analysing
as above, we now have to sum over all involutions of 1, .., 2n (counting the identity as
an involution).

det(A+ J) =
∑

(1 + ai1,i2)× · · · × (1 + ai2n−1,i2n),

plus all sums involving fewer products of the same type. When these products are all
expanded, the coefficient of a given product ai1,i2ai3,i4 · · · ai2r−1,i2r is (equal modulo 2
to) the number of involutions of {1, . . . , 2n} that fix {i1, i2, i3, i4, . . . , i2r−1, i2r}. When
r < n, the coefficient equals the number of involutions of a set of 2n − 2r elements,
which is even, so zero modulo 2. (This applies even to the empty product, 1, so there
is an even number of 1’s). Hence the only terms that survive are those with r = n, and
these sum to det(A). �

Readers were asked to consider the more challenging question of whether or not
the characteristic polynomials of A and B are equal. The Problem Club provided a
“leisurely version” of the above proof which was a wonderful interplay between orbits,
involutions, and fixed points. The approach also spoke to the case of matrices with
entries in a commutative ring R with identity, where key was the language of a matrix
in Mn(R) as a function x : P1([n]) ⊔ P2([n]) → R. The technology in the leisurely
version helped answer the challenging question in the positive: indeed the characteristic
polynomials of A and B are equal.
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The third problem was solved by the North Kildare Mathematics Problem Club; the
proposer, Tran Quang Hung of the Vietnam National University at Hanoi, Vietnam;
Kee-Wai Lau of Hong Kong, China; and your erstwhile contributor. Here is one of those
solutions:

Problem 91.3 . For x > 0, let µ(x) denote the ℓ∞-norm of the sequence

un(x) =
xn

nn
, n = 1, 2, . . . .

Determine

lim
x→∞

logµ(x)

x
.

Solution 92.3. For fixed x > 1, extend the sequence µn(x) to a function fx : [1,∞) →
(0,∞):

fx(y) =
xy

yy
.

It is strictly positive as fx(y) = exp
(

log
(

x
y

)

y
)

. Its derivative with respect to y is:

d

dy
(fx(y)) = fx(y)

(

log

(

x

y

)

− 1

)

.

Note as fx(y) is strictly positive, this derivative is strictly positive on [1, x/e), and
strictly negative on (x/e,∞).

It follows that for fixed x > 1, µ(x) attains its maximum at ⌊x/e⌋ or ⌈x/e⌉. Therefore
we know that for some zx ∈ (−1, 1) the maximum occurs at

x

e
+ zx.

We calculate, using the fact that x can be chosen large enough to make each of the
manipulations valid:

µ(x) =

(

x
x
e
+ zx

)
x

e
+zx

.

Then,

logµ(x) =
(x

e
+ zx

)

log

(

x
x
e
+ zx

)

=
1

e
(x+ ezx) log

(

e · x

x+ ezx

)

=
1

e
(x+ ezx)

[

log e+ log

(

x

x+ ezx

)]

,

and so
logµ(x)

x
=

1

e

(

1 +
ezx
x

)

[

1 + log

(

1

1 + ezx
x

)]

.

As a consequence,

lim
x→∞

logµ(x)

x
=

1

e
× 1× (1 + log(1)) =

1

e
. �

We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (but preferably LATEX). Submissions for the
summer Bulletin should arrive before the end of April, and submissions for the winter
Bulletin should arrive by October. The solution to a problem is published two issues
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after the issue in which the problem first appeared. Please include solutions to any
problems you submit, if you have them.

Finally, I would like to thank Ian Short for his many, many years of service to this
problem page. With your help, we can continue Ian’s great work.
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