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A simpler proof of Lima’s dilogarithm identity

F. M. S. LIMA

Abstract. From a closed-form expression for a hyperbolic integral, I derived in 2012
a non-trivial two-term dilogarithm identity for Li2

(√

2− 1
)

+Li2
(

1− 1/
√

2
)

. In re-
cent works published in this Bulletin, Campbell (2021) has applied a series transform
obtained via Fourier-Legendre theory to find a new proof for that identity, whereas
Stewart (2022), working independently, used known functional relations for the dilog-
arithm function to develop three other proofs, which has renewed interest in this
subject. In this short note, I show how Hill’s five-term relation can be applied to
suitable algebraic points in order to get a simpler proof of that identity.

1. Introduction

The dilogarithm function is a classical function introduced by Leibnitz in 1696, de-
fined as Li2(z) :=

∑

∞

n=1 z
n/n2, which converges for all complex z with |z| ≤ 1. This

function can be extended to all z ∈ C\(1,∞) through the integral representation

Li2(z) := −
∫ z

0

ln (1− t)

t
dt . (1)

Although this integral cannot be expressed as a finite combination of elementary func-
tions, as follows from a theorem by Liouville (1837) [10], closed-forms are currently
known for only a few special values, namely Li2(0) = 0, Li2(1/2) = π2/12 − ln2 2/2,
Li2(−1) = −π2/12, Li2(1) = π2/6, Li2(± i) = −π2/48± iG, Li2(1± i) = π2/16± i (G+
π ln 2/4), Li2(1/2±i/2) = 5π2/96−ln2 2/8±i (G−π ln 2/8), Li2(−φ) = −π2/10−ln2 φ,
Li2(−1/φ) = −π2/15 + 1

2
ln2 φ, Li2(1/φ) = π2/10 − ln2 φ, Li2(1/φ

2) = π2/15 − ln2 φ,

where G :=
∑

∞

n=0 (−1)n/(2n+ 1)2 is Catalan’s constant and φ :=
(

1 +
√
5
)

/2 is the
golden ratio. In fact, closed-form expressions remain scarce even for two-term linear
combinations with rational coefficients of this function at algebraic points (some exam-
ples are given in Refs. [4] and [8, Chaps. 1 and 2], and references therein). Interestingly,
in 2012, on investigating a hyperbolic version of the trigonometric change of variables
introduced by Beukers, Calabi and Kolk to show that

∑

∞

n=1 1/n
2 = π2/6 (the so-called

Basel problem) [1], I found that (see Theorem 3 of Ref. [9])
∫

∞

α/2
ln (tanh z) dz =

α2

4
− π2

16
,

where α := ln (
√
2 + 1). This allowed me to derive the following two-term dilogarithm

identity (see Theorem 4 of Ref. [9]):

Li2

(√
2− 1

)

+ Li2

(

1− 1√
2

)

=
π2

8
− α2

2
− ln2 2

8
. (2)
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Since then, this result has attracted the interest of some mathematicians, among them
Campbell, who in 2021 used a series transform obtained via Fourier-Legendre theory
(see Refs. [3] and [6, Sec. 7.14]) to present an independent proof in this Bulletin [2],
a work which he complemented one year later with a careful investigation of previous
equivalent results, which has led to a result of 1915 by Ramanujan, as seen in Eqs. (3)
and (4) of Ref. [4]. Also in 2022, Stewart has found three other distinct proofs for
Eq. (2) by exploring some known functional relations for the dilogarithm function [11].

However, all these approaches involve complex mathematical steps or are somewhat
lengthy. In this short note, I apply Hill’s five-term relation to get a simpler proof of
Eq. (2).

2. Main Result

According to a conjecture of 1995 by Kirillov [7], it should be possible to derive all
two-term dilogarithm identities from Hill’s five-term relation (1830) [5]1

L(x y) = L(x) + L(y)− L

(

x (1− y)

1− x y

)

− L

(

y (1− x)

1− x y

)

, (3)

where x and y are two complex numbers such that |x| < 1 and 0 < y < 1, or
|y| < 1 and 0 < x < 1, or x < 1 and 0 < y < 1, or y < 1 and 0 < x < 1.
Note that, for simplicity, it is stated in terms of the normalized Rogers’ dilogarithm
L(z) := 6

π2

[

Li2(z) +
1
2
ln z ln (1− z)

]

, as usual. On taking Kirillov’s conjecture as a
motivation, after many attempts I have succeeded in finding a suitable pair of algebraic
arguments x and y for which Hill’s five-term relation reduces to the identity in Eq. (2).

Proof of Eq. (2). On taking x = 2 −
√
2 and y = 1/

√
2, for which x y =

√
2 − 1, in

Hill’s five-term relation, our Eq. (3), one finds

L

(

(

2−
√
2
) 1√

2

)

= L
(

2−
√
2
)

+L

(

1√
2

)

−L

(

3− 2
√
2

2−
√
2

)

−L

(

1/
√
2−

√
2 + 1

2−
√
2

)

,

(4)
which promptly simplifies to

L
(√

2− 1
)

= L
(

2−
√
2
)

+ L

(

1√
2

)

− L

(

1− 1√
2

)

− L

(

1

2

)

. (5)

Now, one applies Euler’s reflection formula (1768) L(z) = 1 − L(1 − z) to both
L
(

2−
√
2
)

and L
(

1/
√
2
)

. Since Euler’s reflection yields L(1/2) = 1/2, one finds

L
(√

2− 1
)

= 1− L
(√

2− 1
)

+ 1− L

(

1− 1√
2

)

− L

(

1− 1√
2

)

− 1

2
, (6)

which promptly reduces to

L
(√

2− 1
)

+ L

(

1− 1√
2

)

=
3

4
, (7)

which is just the Rogers equivalent of Eq. (2). �
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