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A note on a class of Fourier transforms

J.B. TWOMEY

Abstract. We consider functions f ∈ L2(Rn) for which∫
Rn

|f̂(t)|2(1 + log+ |t|)2βdt < ∞, β > 0,

where f̂ is the Fourier transform of f , and we identify a kernel Kβ such that f satisfies
this integral condition if, and only if,

f(x) = (Kβ ∗ F )(x) =

∫
Rn

Kβ(x− t)F (t) dt

for some function F ∈ L2(Rn). We also address the question of ‘Fourier inversion’ for
this class by showing that certain Bochner-Riesz means of the transforms of f = Kβ∗F
converge to f outside small exceptional sets of points in R

n of capacity zero.

1. Introduction

It was conjectured by Lusin in 1915 that the Fourier series of a periodic function
f ∈ L2(−π, π) converges almost everywhere, that is, if ck = 1

2π

∫ π
−π e

−ikxf(x)dx, k ∈ Z,
denote the Fourier coefficients of f , then the partial sums

sn(f)(x) =

k=n
∑

k=−n

cke
ikx

converge almost everywhere to f(x) as n → ∞. The conjecture remained unproven for
several decades and, as doubts began to arise regarding its veracity, some research was
directed towards constructing a counterexample. It came as a major surprise therefore
when, in a famous and very difficult paper [2], Lennart Carleson proved Lusin’s conjec-
ture in 1966. This result was widely celebrated within mathematics and particularly,
perhaps, by those analysts who (like this author) had been nurtured mathematically
on Zygmund’s Trigonometric Series! Carleson’s result was extended to Lp functions,
p > 1, by Hunt [6].

We are concerned with Fourier transforms, and the question that arises in this context
is whether Carleson’s result has an analogue in Rn, specifically whether for a function
f ∈ L2(Rn), the spherical partial integral

SRf(x) =

∫

|t|≤R
f̂(t) exp(2πix·t)dt, R > 0, x ∈ Rn, n ≥ 2, (1)

converges almost everywhere to f(x) in Rn as R → ∞, where f̂ is the Fourier transform
of f . This question remains open, but by analogy with partial results established for
Fourier series prior to Carleson’s paper (see [14, 1.13, p. 163]), it is natural to begin
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seeking answers by investigating functions f which satisfy conditions such as
∫

Rn

|f̂(t)|2(1 + log+ |t|)2βdt < ∞, β > 0, (2)

a stronger requirement than f ∈ L2(Rn). We note that it has been shown by Carberry
and Soria [4] (see also [5]) that if f satisfies (2) with β = 1 then SR(f) → f, as R → ∞,
almost everywhere. We focus in this article on providing a characterisation of functions
f for which (2) holds and, to this end, we define a kernel Kβ which, as we shall prove
in section 2, has the property that f satisfies (2) if, and only if, f = Kβ ∗ F for some
F ∈ L2(Rn). A kernel K is a non-negative, unbounded, and integrable function on
Rn which is radially symmetric and decreasing, i.e. K(x) = K(t) if |x| = |t| and
K(x) ≤ K(t) if |x| ≥ |t|. We write L2

K(Rn) to denote the class of potentials

(K ∗ F )(x) =

∫

Rn

K(x− t)F (t) dt ,

where K is a kernel on Rn and F ∈ L2(Rn), with n ≥ 2. (From here on we shall write
L2
K for L2

K(Rn), and L2 for L2(Rn).) We note [11, p.3] that if f ∈ L2
K then f ∈ L2

and hence has a Fourier transform f̂ ∈ L2 by the Plancherel theorem. It follows that f̂
is integrable in {x : |x| ≤ R} for every fixed R > 0, and the integral for the mean SRf
in (1), and the mean T λ

Rf in (3) below, are thus well-defined for f ∈ L2
K .

An important alternative summability method to the one based on the mean SRf is
Bochner-Riesz summability ([11, pp.170-172], [8], [13]) with

T λ
Rf(x) =

∫

|t|≤R
(1−

|t|2

R2
)λ f̂(t) exp(2πix·t)dt, λ > 0, (3)

a more amenable mean than the spherical partial integral. In section 3, using the
characterisation f = Kβ ∗ F , we derive a result on the convergence of T λ

Rf means,
outside sets of capacity zero, for functions satisfying (2).

2. The main theorem

We begin with the definition of the kernel Kβ . We set

Kβ(x) =

∫ 1

0

Ps(x)

s
(

log 2
s

)β+1
ds, x ∈ Rn, β > 0,

where, for n ≥ 1 and s > 0,

Ps(x) =
λn s

(s2 + |x|2)(n+1)/2
, λn = Γ(

n+ 1

2
)/π(n+1)/2,

is the Poisson kernel for Rn+1
+ = {(x, s) : x ∈ Rn, s > 0}. Since

∫

Rn Ps(x)dx = 1 for
each s > 0 [11, p. 9], and Ps is radially symmetric and decreasing, it follows that Kβ is
a kernel.

To prepare for our theorem we present three lemmas, the first two of which provide
estimates for Kβ and K̂β , and the third establishes an equivalence relation for the classes
L2
K which is central to the proof of the theorem. We will not use Lemma 1 in the proof

but, as it answers obvious questions, we include the lemma for the sake of completeness.

Lemma 2.1. We have

cβ

|x|n
(

log 2
|x|

)β+1
≤ Kβ(x) ≤

c′β

|x|n
(

log 2
|x|

)β+1
, 0 < |x| ≤ 1. (1)

We also have Kβ(x) ≤ cβ |x|
−(n+1) for |x| > 1.
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In Lemmas 2.1 and 2.2, cβ and c′β denote positive quantities which depend on β or n
or both, but are not necessarily the same at each occurrence.

Proof of Lemma 2.1. For notational simplicity we write γ for β + 1 throughout this
proof. Since a2 + b2 ≤ (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0, we note that it is enough to
show that the inequalities in (1) are satisfied by

∫ 1

0

ds
(

log 2
s

)γ
(|x|+ s)n+1

= |x|−n

∫ 1/|x|

0

dr
(

log 2
r|x|

)γ
(1 + r)n+1

= |x|−nI(x),

say. Next, if 0 < |x| ≤ 1 and we write ϕx(r) for the integrand in I(x), we have, since
r ≥ |x|/2 implies 2/r|x| ≤ 4/|x|2,

I(x) ≥

∫ 1/|x|

|x|/2
ϕx(r)dr ≥ 2−γ

(

log
2

|x|

)−γ ∫ 1

1/2

dr

(1 + r)n+1
≥ 2−(γ+n+2)

(

log
2

|x|

)−γ

.

This gives the lefthand inequality in (1). To obtain the second inequality we note that

1/|x|1/2 ≤ 1/|x| when 0 < |x| ≤ 1, and write I(x) = I1(x) + I2(x), where in I1 we

integrate over (0, 1/|x|1/2) and in I2 over (1/|x|1/2, 1/|x|). Since r ≤ 1/|x|1/2 implies

2/r|x| ≥ (2/|x|)1/2,

I1(x) =

∫ 1/|x|1/2

0
ϕx(r)dr ≤ 2γ

(

log
2

|x|

)−γ ∫ ∞

0

dr

(1 + r)n+1
≤ 2γ

(

log
2

|x|

)−γ

.

We have r|x| ≤ 1 in I2(x), so

I2(x) ≤ (log 2)−γ

∫ 1/|x|

1/|x|1/2

dr

r2
≤ (log 2)−γ |x|1/2 ≤ cβ

(

log
2

|x|

)−γ

since |x| ≤ 1 implies
(

log 2
|x|

)γ
≤ c′β(2/|x|)

1/2, for a big enough constant c′β . Inequality

(1) follows. The estimate for |x| > 1 is easily obtained and the Lemma is proved.

Lemma 2.2. If Kβ is the kernel defined as above for β > 0, then the Fourier transform

K̂β(x) =
∫

Rn Kβ(t) exp(−2πix·t)dt satisfies

cβ

(1 + log+ |x|)β
≤ K̂β(x) ≤

c′β

(1 + log+ |x|)β
, x ∈ Rn. (2)

Proof of Lemma 2.2. We note to begin with, since P̂s(x) = exp(−2πs|x|) [11, p. 5],
that, by an interchange of integrals,

K̂β(x) =

∫

Rn

(

∫ 1

0

Ps(t)

s
(

log 2
s

)β+1
ds

)

exp(−2πix·t)dt

=

∫ 1

0

exp(−2πs|x|) ds

s
(

log 2
s

)β+1
=

∫ 1/|x|

0

exp(−2πr) dr

r
(

log 2|x|
r

)β+1
. (3)

Assume that |x| > 1. Then

K̂β(x) ≥

∫ 1/2|x|

1/4|x|2

exp(−2πr) dr

r
(

log 2|x|
r

)β+1

≥ e−2π3−β−1(log 2|x|)−β−1

∫ 1/2|x|

1/4|x|2

1

r
dr

= e−2π3−β−1(log 2|x|)−β ≥ cβ(1 + log |x|)−β = cβ(1 + log+ |x|)−β .



46 TWOMEY

This gives the lower bound in (2). To obtain the upper bound for |x| > 1, we note from
the second equality in (3) that

βK̂β(x) =

∫ 1

0
e−2πs|x|d

(

log
2

s

)−β

= e−2π|x|(log 2)−β + 2π|x| J(x), (4)

where

J(x) =

∫ 1

0
e−2πs|x|(log

2

s
)−βds.

We write J as J1 + J2 where J1 =
∫ 1/|x|1/2

0 , J2 =
∫ 1
1/|x|1/2 . Then

J1(x) ≤ (log 2|x|1/2)−β

∫ 1/|x|1/2

0
e−2πs|x|ds

=
2β−1(log 4|x|)−β

2π|x|

∫ 2π|x|1/2

0
e−udu ≤ cβ |x|

−1(1 + log+ |x|)−β ,

since |x| > 1. Next, by a similar argument,

J2(x) =

∫ 1

1/|x|1/2
≤ (log 2)−β 1

2π|x|

∫ 2π|x|

2π|x|1/2
e−udu ≤ cβ (1 + log+ |x|)−β/|x|,

choosing cβ large enough. Since J = J1 + J2, and e−2π|x| ≤ cβ(1 + log+ |x|)1−β , |x| ≥ 1,
the required upper bound follows from (4) when |x| > 1. The proof of the inequalities

(2) for the case |x| ≤ 1, i.e. that cβ ≤ K̂β(x) ≤ c′β , is easy and is omitted. The proof of
Lemma 2.2 is complete.

Remark If we apply the result (exp(−2πs|x|))∧ = Ps(x) [11, p. 6] to the middle

integral in (3) we see that (K̂β)
∧ = Kβ .

Lemma 2.3. Let K be a kernel with K̂ > 0 and suppose that f ∈ L2. Then
∫

Rn

K̂(t)−2|f̂(t)|2dt < ∞ ⇐⇒ f ∈ L2
K .

Proof. Note first, by L2 transform theory, that if g ∈ L2 then the transform ĝ ∈ L2 and
(ĝ)∧(−t) = g(t).

Assume that
∫

Rn K̂(t)−2|f̂(t)|2dt < ∞ and set F (t) = K̂(t)−1f̂(t), so that F ∈ L2.
Then

f̂(t) = K̂(t)F (t) = K̂(t)(F̂ )∧(−t) = K̂(t)Ĥ(t) = (K ∗H)∧(t)

where H(t) = F̂ (−t), so H ∈ L2, and we have applied the multiplication formula from
[7, theorem 5.8], with p = 1 and q = 2, for the last equality. Hence

(f̂)∧ = ((K ∗H)∧)∧, i.e. f(−t) = (K ∗H)(−t),

or f(t) = (K ∗H)(t), t ∈ Rn. This proves the first part of the Lemma.
For the second part assume that f ∈ L2

K so that f = K ∗ Q where Q ∈ L2. Then

f̂ = K̂Q̂ and Q̂(t) = K̂(t)−1f̂(t). Since Q̂ ∈ L2, the converse implication follows and
the proof is complete.

Our main theorem now follows immediately from Lemmas 2.2 and 2.3 (withK = Kβ).

Theorem 2.4. If f ∈ L2 then
∫

Rn

|f̂(t)|2(1 + log+ |t|)2βdt < ∞, β > 0, (5)

if, and only if, f ∈ L2
Kβ

.
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3. Bochner-Riesz summability

We obtain our final theorem on the convergence of certain Bochner-Riesz means in
L2
K by simply combining two known results. We begin by noting from [11, Corollary

4.16 (b), p.172] that

if f ∈ L2 has a Lebesgue point at x ∈ Rn, that is, if

lim
r→0

1

m(B(x, r))

∫

B(x,r)
|f(t)− f(x)| dt = 0,

where m(B(x, r)) denotes the Lebesgue measure of the ball B(x, r), then the Bochner-
Riesz mean T λ

Rf(x) in (1.3) converges to f(x) for all λ > (n− 1)/2 as R → ∞.

Since L2
K ⊂ L2, as noted above, and L2 functions have Lebesgue points almost every-

where, it follows that for f ∈ L2
K the set of x ∈ Rn for which (1.3) fails to converge

for λ > (n − 1)/2 has Lebesgue measure zero. We strengthen this by combining the
Stein-Weiss result with the following consequence of [12, Theorem 1]:

if f ∈ L2
K then f has a Lebesgue point at all points in Rn except possibly for a set of

points of CK,2-capacity zero.

The capacity referred to here is the particular case p = 2 of the Lp-capacities of Meyers
([9], [1, Chapter 2]). For a brief summary of the basic properties of these capacities
see [10, pp. 341-2]. If CK,2(E) = 0, then E has measure zero, and Meyers’ capacities
provide a way of differentiating between sets of measure zero.

Taking K = Kβ we immediately deduce the following convergence result for functions
in L2

Kβ
.

Theorem 3.1. If f ∈ L2
Kβ

, or equivalently if (2.5) holds, and λ > (n − 1)/2, then

limR→∞ T λ
Rf(x) = f(x) for all x ∈ Rn outside an exceptional set of CKβ ,2-capacity

zero.

It has been shown in [3, Theorem A] that if f ∈ L2 then limR→∞ T λ
Rf(x) = f(x)

almost everywhere inRn for all λ > 0, and an obvious question here therefore is whether
the range of λ in Theorem 3.1 can be extended to all positive values. There is also the
question of whether the characterisation f = Kβ ∗F can be used to obtain convergence
results in L2

Kβ
for the spherical partial integral SRf . These questions are open.
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