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Pairs of Quadratic Forms over the Real Numbers

DAVID B. LEEP AND NANDITA SAHAJPAL

Abstract. This survey paper examines several topics concerning pairs of quadratic
forms with real coefficients. We state a theorem that characterizes pairs of real qua-
dratic forms having a nontrivial common zero and give a proof using a method based
on point-set topology. This proof relies on determining when various subsets associ-
ated with one quadratic form are path-connected. Additionally, we describe how the
signature and rank of a quadratic form change over a 2-dimensional family of qua-
dratic forms. Finally, we delve into nonsingular pairs of quadratic forms, simultaneous
diagonalization, and provide a proof of the spectral theorem. This paper presents a
self-contained exposition of these results.

1. Introduction

Determining whether a quadratic form f with real coefficients has a nontrivial real
zero is straightforward. One can start by diagonalizing f using linear algebra techniques
or repeatedly applying the completing the square method to express f in the form
d1X

2
1 + · · ·+ dnX

2
n. Then, f has a nontrivial real zero if and only if the di’s are not all

positive and not all negative.
Suppose that f, g ∈ R[X1, . . . , Xn] are quadratic forms in n variables. How does one

determine if f, g have a nontrivial common real zero? The answer to this problem is
much harder, but it is well known to experts and has been discussed in many places.
See [8] for a large bibliography on this subject. One of the main goals of this paper is
to answer this question with an exposition that is as self-contained as possible.

In Proposition 4.4, we determine when a pair of quadratic forms with real coefficients
has a nontrivial common zero. We follow a method based on point-set topology that
Swinnerton-Dyer used in [7, Lemma 1 (i)]. The ideas even go back at least as far as [2].
However, there seems to be a gap in Swinnerton-Dyer’s proof. Our exposition will fill
in the details of this gap. See Remark 4.7 for specifics.

In Section 2, we present essential material on quadratic forms that we need for this
paper. Since it is no extra trouble, we give definitions, statements, and proofs of results
in this section that are valid over any field K of characteristic different from 2. We
introduce the objects using a basis-free approach and then routinely use convenient
bases for efficient calculations.

In Section 3, we investigate some topological properties of the zero sets of one qua-
dratic form with real coefficients. Some of these properties are used in Section 4 to help
us solve our problem for pairs of quadratic forms with real coefficients.

In Sections 5 through 8, we study several other topics that are relevant to pairs of
quadratic forms over the real numbers. In Section 5, we study how the signature of a
quadratic form changes over a 2-dimensional family of quadratic forms. In Section 6,
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we study the ranks of quadratic forms in a 2-dimensional family of quadratic forms,
and we relate the rank to the multiplicity of a zero in a naturally occurring polynomial.
For quadratic forms f, g ∈ R[X1, . . . , Xn], we also study in Proposition 6.4 the problem
of finding a real linear combination λf + µg that splits off as many hyperbolic planes
as possible. In Section 7, we study nonsingular pairs of quadratic forms and conditions
when two quadratic forms can be simultaneously diagonalized. In Section 8, we apply
results from Section 7 to pairs of quadratic forms over R. In particular, we use Propo-
sition 8.1 to strengthen a result of Heath-Brown in [3, Lemma 12.1]. See Remark 8.2
for specifics. We end by using our results to give a proof of the Spectral Theorem.

Here are some of the notations and basic notions used throughout this paper. Let K
be a field and let K× = K\{0}. We let charK denote the characteristic of K. Let Kalg

denote an algebraic closure of K. Unless otherwise noted, we work only with fields K
with charK 6= 2. We let K[X1, . . . , Xn] denote the polynomial ring in n variables.

For f, g ∈ K[X1, . . . , Xn], we write f | g if f divides g in K[X1, . . . , Xn]. Recall
that f | g in K[X1, . . . , Xn] if and only if f | g in Kalg[X1, . . . , Xn]. A polynomial
f ∈ K[X1, . . . , Xn] is a homogeneous form of degree m, m ≥ 0, if each monomial in f

has degree m. If f is a homogeneous form, we say that (a1, . . . , an) is a nontrivial zero
of f if f(a1, . . . , an) = 0 and some ai 6= 0. A quadratic form is a homogeneous form of
degree 2. We let e1, . . . , en denote the standard basis of Kn.

We let R denote the field of real numbers and C the field of complex numbers. Recall
that C is an algebraically closed field and that C is the algebraic closure of R, and so
C = Ralg.

2. Basic results about quadratic forms

Definition 2.1 (Quadratic Map). Let V be a finite-dimensional vector space over a field
K. A quadratic map f : V → K is a function satisfying the following two conditions.

(1) f(av) = a2f(v) for all v ∈ V and a ∈ K.
(2) The function Bf : V × V → K defined by Bf (v, w) = f(v + w) − f(v) − f(w)

is a symmetric bilinear form.

We recover the usual notion of a quadratic form by introducing a basis {v1, . . . , vn}
of V . The definition of a quadratic map implies that f(X1v1 + X2v2) = f(v1)X

2
1 +

Bf (v1, v2)X1X2 + f(v2)X
2
2 . A straightforward induction implies that for variables

X1, . . . , Xn, we have

f(X1v1 + · · ·+Xnvn) =
n
∑

i=1

f(vi)X
2
i +

∑

1≤i<j≤n

Bf (vi, vj)XiXj .

Let

f =
n
∑

i=1

aiiX
2
i +

∑

1≤i<j≤n

aijXiXj ∈ K[X1, . . . , Xn],

where aii = f(vi), 1 ≤ i ≤ n, and aij = Bf (vi, vj) for 1 ≤ i < j ≤ n. We call f the
quadratic form associated to the quadratic map f : V → K and the basis {v1, . . . , vn}.
We see that f is a homogeneous form having degree 2, as expected.

Let f =
∑n

i=1 aiiX
2
i +

∑

1≤i<j≤n aijXiXj ∈ K[X1, . . . , Xn] be a quadratic form.

Associated to f is an n× n symmetric matrix M = (mij) where

mij =











aii if i = j
1
2aij if i < j
1
2aji if i > j.
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We have f(X1, . . . , Xn) = XtMX, where X = (X1, . . . , Xn)
t. It is convenient to

regard f as a function f : Kn → K. For a subspace W ⊆ Kn, we let f |W denote the
restriction of f to W .

The associated symmetric bilinear form to f is given by Bf : Kn ×Kn → K defined
Bf (v, w) = vtMw where v, w ∈ Kn are column vectors. Thus f(X) = Bf (X,X). For a
subspace W ⊆ Kn, we define the orthogonal complement

W⊥ = {v ∈ Kn | Bf (v, w) = 0 for all w ∈ W}.
It is easily verified that W⊥ is a subspace of Kn. We write W⊥f if we need to specify
the orthogonal complement of W for a particular quadratic form f.

Suppose that f : Kn → K is a quadratic map and that W is a subspace of Kn

such that Kn = W ⊕ W⊥. Let {v1, . . . , vj} and {vj+1, . . . , vn} be bases for W and

W⊥, respectively. Then the quadratic form associated to f and the basis {v1, . . . , vn} is
f1(X1, . . . , Xj) + f2(Xj+1, . . . , Xn), where f1 and f2 are the quadratic forms associated
to f |W and f |W⊥ , respectively, and the bases {v1, . . . , vj} and {vj+1, . . . , vn}.

Suppose V = W ⊕ Y and let f : V → K be a quadratic map. Let g = f |W and
h = f |Y . If Bf (w, y) = 0 for all w ∈ W , y ∈ Y, then we write f = g ⊥ h.

For quadratic forms f, g ∈ K[X1, . . . , Xn], the K-pencil of f, g, denoted by PK(f, g),
consists of all linear combinations af + bg where a, b ∈ K, not both zero.

Note that f, g have a nontrivial common zero over K if and only if rf+sg and tf+ug

have a nontrivial common zero over K where r, s, t, u ∈ K and the matrix

(

r s

t u

)

is

invertible. Because of this, it is often useful to replace f, g with two other convenient
quadratic forms in PK(f, g).

Two quadratic forms f, g ∈ K[X1, . . . , Xn] are equivalent, written f ∼= g, if there
exists an invertible n× n matrix A with entries in K such that f(X) = g(AX), where
X = (X1, . . . , Xn). In this situation, we say that f is obtained from g by an invert-
ible linear change of variables. If g(X1, . . . , Xn) = XtNX, then this is equivalent
to the condition M = AtNA. A quadratic form f is equivalent to a diagonal form
d1X

2
1 + · · ·+ dnX

2
n under an invertible linear change of variables over K because for

any symmetric matrix M there is an invertible matrix A such that AtMA is a diagonal
matrix. Such a diagonal form is denoted by 〈d1, . . . , dn〉.
Definition 2.2 (Rank of a Quadratic Form over K). The rank of a quadratic form f ,
denoted by rank(f), is the rank of the matrix M .

If f is equivalent to 〈d1, . . . , dn〉, then rank(f) is the number of nonzero di.

Definition 2.3 (Radical of a Quadratic Form). Let f ∈ K[X1, . . . , Xn] be a quadratic
form with associated symmetric bilinear form Bf . The radical of f over K is the
subspace

rad(f) = {v ∈ Kn : Bf (v,K
n) = 0}.

We say that a quadratic form f is nonsingular if rad(f) = 0, and is singular if
rad(f) 6= 0.

We can write Kn = V ⊕ rad(f) for some subspace V ⊆ Kn, and it is straightforward
to check that f |V is nonsingular. We let Null(M) denote the null space of a matrix M .

Lemma 2.4. Let f ∈ K[X1, . . . , Xn] be a quadratic form with associated n × n sym-
metric matrix M .

(1) rad(f) = Null(M).
(2) rank(f) + dim(rad(f)) = n.
(3) The following statements are equivalent.

(a) f is singular.
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(b) rad(f) 6= 0.
(c) rank(f) < n.
(d) det(M) = 0.

Proof. (1) Let v ∈ Null(M). Then Bf (w, v) = wtMv = 0 for all w ∈ Kn, and thus
v ∈ rad(f). Let v ∈ rad(f). Then Bf (w, v) = 0 for all w ∈ Kn. Thus wtMv = 0 for all
w ∈ Kn, which implies that Mv = 0. Therefore, v ∈ Null(M).

(2) We have n = rank(M) + dim(Null(M) = rank(f) + dim(rad(f)).
(3) The equivalence of the statements follows from the definitions, (1) and (2), and

the observation that det(M) = 0 if and only if Null(M) 6= 0. �

Definition 2.5 (Hyperbolic Plane). A quadratic form f ∈ K[X1, X2] is called a hy-
perbolic plane if f is equivalent to the quadratic form X1X2.

The following result is useful to identify a hyperbolic plane.

Lemma 2.6. Let f ∈ K[X1, X2] be a nonsingular quadratic form. The following state-
ments are equivalent.

(1) f has a nontrivial zero over K.
(2) f ∼= X1X2.
(3) f ∼= 〈1,−1〉.

Proof. (1) ⇒ (2): Let f = aX2
1 +2bX1X2 + cX2

2 with the associated symmetric matrix

M =

(

a b

b c

)

. Assume that f has a nontrivial zero over K. Applying an invertible

linear change of variables over K allows us to assume that f(1, 0) = 0. Then a = 0.
Since f is nonsingular, we have b 6= 0. Then f = X2(2bX1 + cX2) ∼= X1X2 because X2

and 2bX1 + cX2 are linearly independent.
(2) ⇒ (3): We have X1X2

∼= (X1 +X2)(X1 −X2) = X2
1 −X2

2 .
(3) ⇒ (1): X2

1 −X2
2 has a nontrivial zero over K, namely, X1 = 1, X2 = 1. �

For a quadratic form f ∈ K[X1 . . . , Xn], we say that f splits off a hyperbolic plane
if f is equivalent to X1X2+h(X3, . . . , Xn) for some quadratic form h ∈ K[X3, . . . , Xn].
Similarly, we say that f splits off j hyperbolic planes, if

f ∼= X1X2 +X3X4 + · · ·+X2j−1X2j + h(X2j+1, . . . , Xn).

Lemma 2.7. Suppose that f ∈ K[X1, . . . , Xn] is a nonsingular quadratic form that has
a nontrivial zero over K. Then f ∼= X1X2 + h(X3, . . . , Xn) for some quadratic form
h ∈ K[X3, . . . , Xn].

Proof. An invertible linear change of variables allows us to assume that f(1, 0, . . . , 0) =
0. Then f ∼= X1L(X2, . . . , Xn) +Q1(X2, . . . , Xn) where L is a linear form and Q1 is a
quadratic form, both with coefficients in K. We have L 6= 0 because rad(f) = (0). A
second invertible linear change of variables allows us to assume that

f ∼= X1X2 +Q2(X2, . . . , Xn) = X2(X1 + c2X2 + · · ·+ cnXn) + h(X3, . . . , Xn)

where Q2, h are quadratic forms with coefficients in K. A third invertible linear change
of variables allows us to assume that f ∼= X1X2 + h(X3, . . . , Xn). �

3. One Quadratic Form over the Real Numbers

In this section, we prove some basic properties of quadratic forms over R. We begin
by introducing some definitions and terminology that are specific to quadratic forms
over R. Let f ∈ R[X1, . . . , Xn] be a quadratic form with associated symmetric matrix
M .

Definition 3.1 (Definite, Semi-definite, Indefinite).
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(1) We say that f is a definite quadratic form over R if f(v) has the same sign for
every v ∈ Rn\0. According to that sign, the quadratic form f is called positive
definite or negative definite.

(2) We say that f is a semi-definite quadratic form over R if f(v) is either non-
negative or non-positive for every v ∈ Rn\0. If f(v) is non-negative for every
v ∈ Rn\0, then f is called positive semi-definite. If f(v) is non-positive for every
v ∈ Rn\0, then f is called negative semi-definite.

(3) We say that f is an indefinite quadratic form over R if f takes both positive
and negative values when evaluated at vectors in Rn\0.

We say that an n×n symmetric matrix M is positive definite (negative definite, semi-
definite, indefinite) if the quadratic form f(X1, . . . , Xn) = XtMX has that property.

Proposition 3.2. A quadratic form f ∈ R[X1, . . . , Xn] has a nontrivial zero over R if
and only if f is not definite.

Proof. Since f is equivalent to a diagonal form d1X
2
1 + · · ·+ dnX

2
n, it follows that f has

a nontrivial zero over R if and only if d1, . . . , dn do not all have the same sign. �

Definition 3.3 (Signature of a Quadratic Form over R). Suppose that f is equivalent
to 〈d1, . . . , dn〉. Let r be the number of elements in the set {di | di > 0, 1 ≤ i ≤ n}, and
s be the number of elements in the set {di | di < 0, 1 ≤ i ≤ n}. The signature of f ,
denoted by sgn(f), is defined by sgn(f) = r − s.

Proposition 3.4. The signature of f does not depend on the diagonalization of f .

Proof. We can write Rn = V1⊕V2⊕ rad(f) where dim(V1) = r and f is positive definite
on V1, dim(V2) = s and f is negative definite on V2, and dim(rad(f)) = t where t is the
number of di’s that equal zero.

Similarly, suppose that f is also equivalent to 〈d′1, . . . , d′n〉 and write Rn = V ′
1 ⊕ V ′

2 ⊕
rad(f) where V ′

1 , V
′
2 , rad(f) have dimensions r′, s′, t, respectively, as well as the other

properties above, and sgn(f) = r′ − s′.
Suppose that r 6= r′. We can assume that r < r′ and then s > s′ because r + s =

r′ + s′ = n− t. It follows that (V2 ⊕ rad(f)) ∩ V ′
1 6= (0) because

dim(V2 ⊕ rad(f)) + dim(V ′
1) = s+ t+ r′ > s+ t+ r = n.

Let v ∈ (V2 ⊕ rad(f)) ∩ V ′
1 with v 6= 0. Then f(v) ≤ 0 because v ∈ V2 ⊕ rad(f), and

f(v) > 0 because v ∈ V ′
1 . This contradiction shows that r = r′, and thus s = s′.

Therefore r − s = r′ − s′. �

Definition 3.5 (Principal Minor). Let M be an m × m square matrix. A principal
sub-matrix of M is a matrix obtained by deleting any k rows and the corresponding
k columns. The leading principal sub-matrix of order k of M is obtained by deleting
the last m− k rows and columns of M . The determinant of a principal sub-matrix of a
matrix M is called a principal minor of M , and the determinant of a leading principal
sub-matrix of M is called a leading principal minor of M .

A version of the following result is stated in many textbooks. See for example, [4, p.
328]. We give a particularly nice proof for the convenience of the reader. Note that a
principal minor in [4] is what we call a leading principal minor.

Proposition 3.6 (Sylvester’s Criterion). Let A be a real symmetric n×n matrix. The
following statements are equivalent.

(1) A is positive definite.
(2) Every principal minor of A is positive.
(3) Every leading principal minor of A is positive.
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Proof. (1) ⇒ (2) Suppose that A is positive definite. Then each principal i × i sub-
matrix B is positive definite. Since B = CtDC for some invertible i× i matrix C and
some diagonal i × i matrix D with positive entries along its main diagonal, it follows
that det(B) > 0. Thus (2) holds.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Assume that every leading principal minor of A is positive. The proof is

by induction on n with the case n = 1 being trivial. Assume that n ≥ 2 and that the
result has been proved for real symmetric (n− 1)× (n− 1) matrices. Let

A =

(

M v

vt c

)

,

where M is an (n− 1)× (n− 1) matrix, v is an (n− 1)× 1 matrix, and c ∈ R. Since all
leading principal minors of A are positive, it follows that every leading principal minor
of M is positive. Then det(M) > 0 and so M is invertible, and by induction, M is
positive definite. Note that M−1 is also symmetric. Let

L =

(

I 0
vtM−1 1

)

, B =

(

M 0
0 c− vtM−1v

)

.

Since

A =

(

M v

vt c

)

=

(

I 0
vtM−1 1

)(

M 0
0 c− vtM−1v

)(

I M−1v

0 1

)

,

we have

A = LBLt.

Since det(L) = 1 and det(M) > 0, this gives det(A) = det(L)2 det(B) = det(B) =
det(M) (c − vtM−1v). Since det(A) > 0, this gives c − vtM−1v > 0. Therefore B is
positive definite. Since A = LBLt, it follows that A is positive definite. �

Definition 3.7 (Path-Connected Topological Space). A topological space X is path-
connected if for any p, q ∈ X, there is a continuous map γ : [0, 1] → X such that γ(0) = p

and γ(1) = q. Such a map is called a path from p to q in X.

Definition 3.8 (Unit m−sphere, Sm). Let m ≥ 1 be any natural number. The unit
m−sphere is defined as

Sm =
{

(x1, . . . , xm+1) ∈ Rm+1
∣

∣

∣

m+1
∑

i=1

x2i = 1
}

.

Lemma 3.9. For m ≥ 1, Sm is a path-connected subset in Rm+1.

Proof. Let x = (x1, . . . , xm+1). The map σ : Rm+1\0 → Sm given by σ(x) =
x

√

∑m+1
i=1 x2i

is a well-defined, continuous map such that σ(Rm+1\0) = Sm. Since Rm+1\0 is path-
connected for m ≥ 1 and a continuous image of a path-connected set is also path-
connected, it follows that σ(Rm+1\0) = Sm is a path-connected subset in Rm+1. �

The next three propositions determine whether certain subsets in Rn associated with
a quadratic form are path-connected. Some of these results are used later in the proofs
of Proposition 4.1 and Proposition 4.4. For the sake of completeness, we give a complete
treatment here.

Notation. Let f ∈ R[X1, . . . , Xn] be a quadratic form, and let f=0 denote the set
{x ∈ Rn\0 | f(x) = 0}. The notation f>0, f≥0, f<0, f≤0 are defined in a similar
fashion.
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Let X ⊂ Rn\0 be any subset. Consider the relation ∼ on X defined by p ∼ q if there
exists a path from p to q which lies entirely in X. Then ∼ is an equivalence relation on
X and the equivalence classes are called the path-connected components of X. The set
X can be written as a disjoint union of these path-connected components.

To study the path-connected components of the above sets, we will apply an invertible
linear change of variables to put the quadratic form into a convenient shape that is easy
to work with. Since an invertible linear map of Rn is a homeomorphism, path-connected
components are mapped to path-connected components.

Since a quadratic form defined over R can be diagonalized, it is easy to check that
if a quadratic form f ∈ R[X1, . . . , Xn] is indefinite and has rank r ≤ n, then ±f is
equivalent to either X2

1 + · · · + X2
r−1 − X2

r or X2
1 + · · · + X2

k − X2
k+1 − · · · − X2

r with
k ≥ 2, r − k ≥ 2. We focus on these two quadratic forms in Proposition 3.11 and
Proposition 3.12.

Proposition 3.10. Let f ∈ R[X1, . . . , Xn] be a quadratic form in n ≥ 2 variables.
Assume that rad(f) 6= 0. Then f=0, f≤0, and f≥0 are path-connected.

Proof. Let rank(f) = m. Then we can assume that f ∈ R[X1, . . . , Xm], and m < n

because rad(f) 6= 0. Let u = (a1, . . . , am, . . . , an) ∈ f=0. Then u = (a1, . . . , an) is
path-connected to u′ = (a1, . . . , am, 1, am+2, . . . , an) by a line segment that lies in f=0,
and u′ is path-connected to em+1 by a line segment that lies in f=0. Therefore, u is
path-connected to em+1 in f=0. Since any two points in f=0 are path-connected to
em+1, it follows that f=0 is path-connected.

The proof that f≤0 and f≥0 are path-connected is obtained by replacing each f=0

with either f≤0 or f≥0. �

Proposition 3.11. Let f = X2
1 + · · ·+X2

r−1 −X2
r ∈ R[X1, . . . , Xn], r ≤ n.

(1) (a) If 2 = r = n, then f>0, f≥0, f<0, and f≤0 each have two path-connected
components B1 and B2 where B2 = (−1)B1.

(b) If 2 = r < n, then f≥0 and f≤0 are path-connected.
(c) If 2 = r < n, then f>0 and f<0 each have two path-connected components

B1 and B2 where B2 = (−1)B1.
(2) (a) If 3 ≤ r < n, then f≤0 is path-connected.

(b) If 3 ≤ r, then f>0 and f≥0 are path-connected.
(c) If 3 ≤ r = n, then f≤0 is not path-connected.
(d) If 3 ≤ r then f<0 is not path-connected.
Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f≤0 (f<0). In (2c) and (2d), u, v

are path-connected in f≤0 (f<0) if and only if ar, br have the same sign. In
particular, f≤0 (f<0) has two path-connected components B1 and B2 where B2 =
(−1)B1.

(3) (a) If 2 ≤ r < n, then f=0 is path-connected.
(b) Let 2 ≤ r = n.

(i) If r = 2, then f=0 has four path-connected components.
(ii) Assume 3 ≤ r = n. Let u = (a1, . . . , ar), v = (b1, . . . , br) ∈ f=0. Then

u, v are path-connected in f=0 if and only if ar, br have the same
sign. In particular, f=0 has two path-connected components B1 and
B2 where B2 = (−1)B1.

Proof. (1) Note that in this case f = X2
1 −X2

2 .

(a) If 2 = r = n, then (1, 0) and (−1, 0) lie in f≥0 but are not path-connected
in f≥0 because a path joining (1, 0) and (−1, 0) would contain a point (0, b)
for some nonzero b ∈ R, but such a point would not lie in f≥0. Similarly,
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f>0 f<0 f=0 f≥0 f≤0

r = 2 = n No† No† No No† No †

r = 2, r < n No † No† Yes Yes Yes

r ≥ 3, r = n Yes No† No† Yes No†

r ≥ 3, r < n Yes No† Yes Yes Yes
Table 1. Summary of the results from Proposition 3.11. The sets
marked with “No†” have two path-connected components B1 and B2

where B2 = (−1)B1.

f>0 is also not path-connected. Since r = 2, by replacing f with −f, we
get that f<0 and f≤0 are each not path-connected.

(b) If 2 = r < n, then f≥0 and f≤0 are path-connected by Proposition 3.10.
(c) The points (1, 0, . . . , 0) and (−1, 0, . . . , 0) lie in f>0 but are not path-

connected in f>0 because a path joining (1, 0, . . . , 0) and (−1, 0, . . . , 0)
would contain a point (0, b2, . . . , bn) where some bi 6= 0, 2 ≤ i ≤ n, but
such a point lies in f≤0. Since r = 2, by replacing f with −f, we get that
f<0 is also not path-connected.

In (a) and (c), it follows that the indicated set is the union of two path-
connected components B1 and B2 where B2 = (−1)B1.

(2) (a) If 3 ≤ r < n, then f≤0 is path-connected by Proposition 3.10.
(b) Let 3 ≤ r and let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f>0. Then ai 6= 0 and

bj 6= 0 for some i, j where 1 ≤ i, j ≤ r − 1. Note that u = (a1, . . . , an) is
path-connected to u′ = (a1, . . . , ar−1, 0, . . . , 0) by a line segment that lies in
f>0, and v = (b1, . . . , bn) is path-connected to v′ = (b1, . . . , br−1, 0, . . . , 0)
by a line segment that lies in f>0. Since r ≥ 3, we have that Rr−1\{0} is
path-connected and thus u′, v′ are path-connected by a line segment that
lies in f>0. Therefore, f>0 is path-connected.
If 3 ≤ r < n, then f≥0 is path-connected by Proposition 3.10.
We can now assume that 3 ≤ r = n. Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈
f≥0. Since r = n, we have ai, bj 6= 0 for some i, j where 1 ≤ i, j ≤ r − 1.
Note that u = (a1, . . . , an) is path-connected to u′ = (a1, . . . , ar−1, 0) by
a line segment that lies in f≥0, and v = (b1, . . . , bn) is path-connected to
v′ = (b1, . . . , br−1, 0) by a line segment that lies in f≥0.
Since r ≥ 3, we have that Rr−1\{0} is path-connected and thus u′, v′ are
path-connected by a line segment that lies in f≥0. Therefore, f≥0 is path-
connected.

(c) Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f≤0. Then ar 6= 0 and br 6= 0
because r = n. First assume that ar, br have opposite signs. A path from
u to v must pass through some point w = (c1, . . . , cr−1, 0) where f(w) > 0.
Thus u and v are not path-connected in f≤0.
Now suppose that ar, br have the same signs. Note that u and u′ =
(0, . . . , 0, ar) are path-connected by a line segment that lies in f≤0, and v

and v′ = (0, . . . , 0, br) are path-connected by a line segment that lies in f≤0.
Since ar, br have the same signs, it follows that u′, v′ are path-connected by
a line segment that lies in f≤0. Therefore, u, v are path-connected in f≤0.
Since u ∈ f≤0 if and only if −u ∈ f≤0, it follows that f≤0 is the union of
two path-connected components B1 and B2 where B2 = (−1)B1.

(d) Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f<0. Then ar 6= 0 and br 6= 0.
First assume that ar, br have opposite signs. A path from u to v must
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pass through some point w = (c1, . . . , cr−1, 0, cr+1, . . . , cn) where f(w) ≥ 0.
Thus u and v are not path-connected in f<0.
Now suppose that ar, br have the same signs. Note that u and u′ =
(0, . . . , 0, ar, 0, . . . , 0) are path-connected by a line segment that lies in f<0,
and v and v′ = (0, . . . , 0, br, 0, . . . , 0) are path-connected by a line segment
that lies in f<0. Since u

′ is path-connected to v′ by a line segment that lies
in f<0, it follows that u, v are path-connected in f<0. Since u ∈ f<0 if and
only if −u ∈ f<0, it follows that f<0 is the union of two path-connected
components B1 and B2 where B2 = (−1)B1.

(3) (a) This case follows from Proposition 3.10.
(b) First, assume 2 = r = n. Then f = X2

1 − X2
2 . The four path-connected

components are given by X2 = ±X1, X1 > 0, and X2 = ±X1, X1 < 0.
Now assume that 3 ≤ r = n. Let u = (a1, . . . , ar), v = (b1, . . . , br) ∈ f=0.
Then ar 6= 0, br 6= 0, and ai 6= 0, bj 6= 0 for some 1 ≤ i, j ≤ r − 1.
Suppose that ar and br have opposite signs. Then a path from u to v in
f=0 would pass through a nonzero vector of the form w = (c1, . . . , cr−1, 0)
where f(w) > 0. Therefore, u and v are not path-connected in f=0.
Now suppose that ar and br have the same signs. There exist c, d ∈ R>0

such that u′ = c(a1, . . . , ar−1), v
′ = d(b1, . . . , br−1) ∈ Sr−2. Then u′′ =

(

u′,
ar

|ar|

)

and v′′ =

(

v′,
br

|br|

)

lie in f=0. Note that
ar

|ar|
=

br

|br|
= ±1.

We have that u is path-connected to u′′ by a line segment that lies in f=0

and v is path-connected to v′′ by a line segment that lies in f=0. Next, u
′′

is path-connected to v′′ by a path that lies in f=0 by Lemma 3.9 because
either u′′, v′′ ∈ Sr−2×{1} or u′′, v′′ ∈ Sr−2×{−1}. Thus u is path-connected
to v in f=0.
Therefore, u is path-connected to v in f=0 if and only if ar, br have the same
sign. It follows that f=0 is the union of two path-connected components
B1 and B2 where B2 = (−1)B1.

�

Proposition 3.12. Let f = X2
1 + · · · + X2

k − X2
k+1 − · · · − X2

r ∈ Rn[X1, . . . Xn] such
that rank(f) = r ≤ n. Assume that k ≥ 2, r − k ≥ 2. Then f>0, f≥0, f<0, f≤0, and
f=0 are each path-connected.

Proof. First, we show that f>0 is path-connected. Let u = (a1, . . . , an), v = (b1, . . . , bn)
be points in f>0. This implies that ai 6= 0, bj 6= 0 for some 1 ≤ i, j ≤ k. There exist
c, d ∈ R>0 such that letting

u′ = (ca1, . . . , cak, 0, . . . , 0), v′ = (db1, . . . , dbk, 0, . . . , 0),

we have u′, v′ ∈ Sk−1 × {0}n−k ⊂ f>0, where Sk−1 is the unit sphere in Rk.
Since Sk−1 is path-connected when k ≥ 2, u′ and v′ are path-connected in f>0. Since

u is path-connected to u′ by a line segment that lies in f>0, and v′ is path-connected
to v by a line segment that lies in f>0, it follows that u is path-connected to v in f>0

and hence f>0 is path-connected. It follows that f<0 = (−f)>0 is also path-connected.
If r < n, then rad(f) 6= 0 and hence f≥0, f≤0, and f=0 are each path-connected by

Proposition 3.10.
Now assume that r = n. We next show that f=0 is path-connected. Let u, v be points

in f=0. Write u = (p, q) and v = (r, s) where p, r ∈ Rk\0 and q, s ∈ Rn−k\0. There
exist c, d ∈ R>0 such that

(cp, cq), (dr, ds) ∈ Sk−1 × Sn−k−1 ⊂ f=0.
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Note that u is path-connected to (cp, cq) by a line segment that lies in f=0, and v is
path-connected to (dr, ds) by a line segment that lies in f=0. Since k ≥ 2 and n−k ≥ 2,
it follows that Sk−1 × Sn−k−1 is path-connected. Thus (cp, cq) is path-connected to
(dr, ds) in Sk−1 × Sn−k−1. It follows that u is path-connected to v in f=0, and thus f=0

is path-connected.
We now show that f≥0 is path-connected. We have e1 ∈ f>0 and e1 + ek+1 ∈ f=0.

The line segment joining e1 and e1 + ek+1 lies in f≥0. Since f>0 and f=0 are each
path-connected and there is a path in f≥0 joining e1 and e1 + ek+1, it follows that
f>0 ∪ f=0 = f≥0 is path-connected.

It follows that f≤0 = (−f)≥0 is also path-connected. �

The parts of Proposition 3.11 that are needed for the proofs of Proposition 4.1 and
Proposition 4.4 are parts 1(a), 1(c), 2(b), 2(d), and 3.

4. Two Quadratic Forms over the Real Numbers

Our proof of Proposition 4.4 below is slightly different from the proof given in [7,
Lemma 1 (i)]. We first give Swinnerton-Dyer’s proof of [7, Lemma 1 (ii)] in Proposi-
tion 4.1 and then use this result to give a simpler proof of [7, Lemma 1 (i)] in Proposi-
tion 4.4. We have added many details not included in Swinnerton-Dyer’s exposition.

Proposition 4.1. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms with n ≥ 2 and assume
that f is indefinite. Then there exist real zeros v, w on f=0 such that g(v) > 0 and
g(w) < 0 if and only if λf + g is indefinite for all λ ∈ R.

Proof. If there exist real zeros v, w on f=0 such that g(v) > 0 and g(w) < 0, then λf+g

is indefinite for all λ ∈ R because (λf + g)(v) > 0 and (λf + g)(w) < 0.
Now assume that λf + g is indefinite for all λ ∈ R. Suppose that g ≥ 0 on f=0. We

will obtain a contradiction. The case g ≤ 0 on f=0 is handled by replacing g with −g

and noting that −g ≥ 0 on f=0.
The set (λf + g)<0 does not meet f=0 for any real λ because f=0 lies entirely in

g ≥ 0. For any λ ∈ R, (λf + g)<0 is a non-empty, open set. Since λf + g is indefinite,
its rank is at least 2. Proposition 3.11, Proposition 3.12, and the comments above
Proposition 3.10 imply that the set (λf + g)<0 is either path-connected or has two
path-connected components B1, B2 where B2 = (−1)B1. Since f>0 and f<0 are disjoint
open sets, it follows that each path-connected component lies entirely in either f>0

or f<0. Since f is a quadratic form, f(v) = f(−v) for all v ∈ Rn, so it follows that if
(λf+g)<0 has two path-connected components, then both path components lie entirely
in either f>0 or f<0. Thus (λf + g)<0 lies entirely in either f>0 or f<0.

Define

Λ1 =
{

λ ∈ R
∣

∣ λf + g < 0 lies in f > 0
}

,

and

Λ2 =
{

λ ∈ R
∣

∣ λf + g < 0 lies in f < 0
}

.

Then Λ1 and Λ2 are disjoint and Λ1 ∪ Λ2 = R.

Claim. Λ1 and Λ2 are non-empty subsets of R.

Since f is indefinite, there exist v, u ∈ Rn\0 such that f(v) > 0 and f(u) < 0.

Choose λ1, λ2 ∈ R such that λ1 <
−g(v)
f(v) and λ2 >

−g(u)
f(u) . Then λ1f(v) + g(v) < 0 and

so λ1 ∈ Λ1. Similarly, λ2f(u) + g(u) < 0, and so λ2 ∈ Λ2.

Claim. Λ1 and Λ2 are open sets in R.
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Let λ ∈ Λ1. Then there exists v ∈ Rn such that λf(v) + g(v) < 0 and f(v) > 0.

This implies that λ <
−g(v)
f(v) . If λ′ <

−g(v)
f(v) , then λ′f(v) + g(v) < 0. Hence, λ ∈

(

−∞,
−g(v)

f(v)

)

⊆ Λ1.

Similarly, for λ ∈ Λ2 there exists u ∈ Rn such that λf(u) + g(u) < 0 and f(u) < 0.

This implies that λ >
−g(u)
f(u) . If λ′ >

−g(u)
f(u) , then λ′f(u) + g(u) < 0. Hence, λ ∈

(−g(u)

f(u)
,∞

)

⊆ Λ2. This proves the claim.

The previous two claims show that R can be written as a disjoint union of two non-
empty open sets, which is a contradiction. Therefore, there exist real zeros on f=0 that
give either sign to g. �

Remark 4.2. In Proposition 4.1, suppose that f is a positive semi-definite, but not a
definite quadratic form. If there exist real zeros on f=0 that give either sign to g, then
λf + g is indefinite for all λ ∈ R. However, the converse statement is not true, as the
next example shows.

Example 4.3. Let f = X2
1 + X2

2 and g = X1X3 + X2X4 be quadratic forms in
R[X1, X2, X3, X4]. Then f is positive semi-definite and g is indefinite. For any nonzero
λ ∈ R,

λf + g = λX2
1 + λX2

2 +X1X3 +X2X4

is indefinite because

(λf + g)(1, 1, 0, 0) = 2λ and (λf + g)(1, 1,−2λ,−2λ) = −2λ

are opposite in signs when λ 6= 0. Therefore, λf + g is indefinite for all λ ∈ R, but
g|f=0

= 0.

Proposition 4.4. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms with n ≥ 3. Then the
following statements are equivalent.

(1) The set f = g = 0 contains a nontrivial real zero.
(2) λf + µg is not definite for any real λ, µ, not both zero.
(3) For every real λ, µ, not both zero, λf + µg has a nontrivial real zero.

Proof. A definite quadratic form has no nontrivial real zero. A quadratic form that is
not definite is either semi-definite or indefinite, and in each case, the quadratic form
has a nontrivial real zero. Thus (2) and (3) are equivalent.

(1) ⇒ (2). If f = g = 0 has a nontrivial real zero, then λf + µg is not definite for
any real λ, µ, not both zero.

(2) ⇒ (1). Suppose that λf + µg is not definite for any real λ, µ not both zero. We
have the following two cases:

Case 1. Suppose there exists a semi-definite form in PR(f, g). Without loss of generality,
we may assume that f is a positive semi-definite quadratic form. Since f is not
definite, after an invertible linear transformation, we may assume that

f(X1, . . . , Xn) = X2
1 + · · ·+X2

r ,

where r < n is the rank of f , and

g =
∑

1≤i≤j≤n

aijXiXj .

Suppose first that g(0, . . . , 0, Xr+1, . . . , Xn) has no nontrivial zero over R.
Then g(0, . . . , 0, Xr+1, . . . , Xn) is definite, and by replacing g with −g if neces-
sary, we can assume that g(0, . . . , 0, Xr+1, . . . , Xn) is positive definite.
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For λ ∈ R, consider the symmetric matrix corresponding to λf + g:

r n− r
































λ+ α11 ∗
r

. . . ∗
∗ λ+ αrr

n− r ∗ ∗

Since g(0, . . . , 0, Xr+1, . . . , Xn) is positive definite, the n− r leading principal
minors starting from the lower right corner of the above matrix are positive by
Proposition 3.6. Since λ appears only in the diagonal entries, we can choose λ0

large enough so that all leading principal minors starting from the lower right
corner are positive. Hence, Proposition 3.6 implies that λ0f + g is a positive
definite quadratic form, which is a contradiction.

Thus g(0, . . . , 0, Xr+1, . . . , Xn) has a nontrivial zero over R. This zero is then
a nontrivial common zero over R of f, g.

Case 2. Assume that every form in PR(f, g) is indefinite. Since f is indefinite and n ≥ 3,
Proposition 3.11, Proposition 3.12, and the comments above Proposition 3.10
imply that f=0 is either path-connected or is a union of two path-connected
components of the form B1 ∪ B2 where B2 = −B1.

Proposition 4.1 implies that there exist u, v ∈ f=0 such that g(u) > 0 and
g(v) < 0. We can assume that u, v lie in the same path-connected component
B of f=0 because v can be replaced by −v if necessary.

Consider a path γ : [0, 1] → B where γ is a continuous function satisfying
γ(0) = u and γ(1) = v. Since g : B → R is continuous, we have g ◦γ : [0, 1] → R
is a continuous function. The image of g◦γ is connected because the continuous
image of a connected space is connected. Since g◦γ(0) = g(u) > 0 and g◦γ(1) =
g(v) < 0, it follows that there exists c ∈ (0, 1) such that g ◦ γ(c) = 0. Thus
γ(c) ∈ B ∩ g=0 ⊆ f=0 ∩ g=0.

�

Example 4.5. Let f = 2X1X2, g = X2
1 − X2

2 . The pair f, g has no nontrivial zeros
over R, or even over C. Every form in the R-pencil is indefinite. This shows that the
hypothesis n ≥ 3 in Proposition 4.4 is necessary.

Example 4.6. This example shows that condition (2) in Proposition 4.4 is not the
same as the condition that λf + µg is indefinite for every real λ, µ, not both zero. In
particular, it really is necessary to consider Case 1 in the proof that (2) ⇒ (1). Let
1 ≤ j ≤ n− 2 and let

f = X2
1 + · · ·+X2

j

g = h(X1, . . . , Xj) +X2
j+1 + · · ·+X2

n−1 −X2
n,

where h is any quadratic form with real coefficients. Then f is positive semi-definite, but
not definite, and λf+µg is indefinite for every real λ, µ with µ 6= 0. Also, (0, . . . , 0, 1, 1)
is a real nontrivial common zero of f, g.

Remark 4.7. The proof of Proposition 4.4 is motivated by [7, Lemma 1 (i)]. However,
the proof given in [7, Lemma 1 (i)] did not consider Case 1 in the proof of (2) ⇒ (1).
The argument given in the proof of [7, Lemma 1 (i)] fails when f is semi-definite.
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5. Signature of a Quadratic Form

Let f, g ∈ R[X1, . . . , Xn] be two quadratic forms and let Mf ,Mg denote the symmet-
ric matrices corresponding to f, g, respectively. Let

D(λ, µ) = det(λf + µg) = det(λMf + µMg),

and call this the determinant polynomial of f, g. Either D(λ, µ) = 0 or D(λ, µ) is a
nonzero homogeneous form of degree n in the variables λ, µ. See Example 6.6 below for
an example where D(λ, µ) = 0. Let

T = {(λ, µ) ∈ S1 ⊂ R2 | det(λf + µg) = 0}.
Lemma 5.1. Assume that D(λ, µ) = det(λf + µg) is a nonzero homogeneous form in
the variables λ, µ. Then |T | ≤ 2n.

Proof. The hypothesis implies that D(λ, µ) = det(λf + µg) is a nonzero homogeneous
form of degree n in the variables λ, µ. Since D(λ, µ) has at most n distinct linear
factors defined over R, the equation D(λ, µ) = 0 has at most 2n distinct zeros on S1

because each linear factor aλ + bµ gives exactly two zeros

( −b√
a2 + b2

,
a√

a2 + b2

)

and
(

b√
a2 + b2

,
−a√
a2 + b2

)

of D(λ, µ) on S1. Therefore, |T | ≤ 2n. �

Next, we define the signature map

Sgn : S1 → Z

(λ, µ) 7→ sgn(λf + µg)

For any n× n matrix M and integer k with 1 ≤ k ≤ n, let M (k) denote the upper left
k × k sub-matrix of M , and let dk = det(M (k)).

In the following, we give the discrete topology to Z, which is the same as the subspace
topology inherited from the standard topology on R.

Proposition 5.2. Assume that D(λ, µ) is nonzero. The signature map Sgn is constant
on each connected component of S1 − T and thus Sgn is continuous at all points of S1

except for the finitely many points that lie in T ⊂ S1.

Proof. The set T is finite by Lemma 5.1. Let (λ0, µ0) ∈ S1 − T . Then λ0f + µ0g is
a nonsingular quadratic form. Since rad(λ0f + µ0g) = 0, we can write Rn = V ⊕ W

where (λ0f + µ0g)(v) > 0 for all nonzero v ∈ V , (λ0f + µ0g)(w) < 0 for all nonzero
w ∈ W , dim(V ) = r, dim(W ) = s, sgn(λ0f +µ0g) = r− s. The subspaces V,W are not
uniquely determined, but dim(V ), dim(W ) are uniquely determined by Proposition 3.4
and its proof. Let {v1, . . . , vr} be a basis of V and {vr+1, . . . , vr+s} a basis of W . Let

SV = {a1v1 + · · ·+ arvr ∈ V | a21 + · · ·+ a2r = 1},
SW = {ar+1vr+1 + · · ·+ anvn ∈ W | a2r+1 + · · ·+ a2n = 1}.

We take SV to be the empty set if r = 0, and similarly for SW if s = 0. The sets SV ,
SW are compact subsets of Rr, Rs, respectively.

The function τV : SV × S1 → R defined by τV (v, λ, µ) = vtMλf+µgv − vtMλ0f+µ0gv

is a polynomial function of the entries of v and of λ, µ, and thus a continuous function,
and similarly for the corresponding function τW : SW × S1 → R. Since SV × S1 and
SW ×S1 are compact subsets of the metric spaces Rr×R2, Rs×R2, respectively, uniform
continuity implies that for every ε > 0, there exists δ > 0 such that if (λ, µ) lies in Uδ,
the open neighborhood around (λ0, µ0) of radius δ, then

|vtMλf+µgv − vtMλ0f+µ0gv| < ε,
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for every v ∈ SV , with a similar statement holding for every v ∈ SW .
If SV is nonempty, let

AV = min
v∈SV

{|vtMλ0f+µ0gv|},

with AW defined similarly if SW is nonempty. Note that if SV is nonempty, then AV > 0
because SV is compact, and similarly, AW > 0 if SW is nonempty.

Let ε = min{AV , AW } if SV and SW are both nonempty. Otherwise, let ε = AV if
only SV is nonempty, and let ε = AW if only SW is nonempty.

Since |vtMλ0f+µ0gv| ≥ ε for all v ∈ SV ∪ SW , and since for all (λ, µ) ∈ Uδ, we have
|vtMλf+µgv − vtMλ0f+µ0gv| < ε, it follows that vtMλ0f+µ0gv and vtMλf+µgv have the
same sign for all v ∈ SV and (λ, µ) ∈ Uδ, with a similar statement for all v ∈ SW .

Therefore for all (λ, µ) ∈ Uδ, we have (λf + µg)(v) > 0 for all v ∈ SV and thus also
for all v ∈ V , and (λf+µg)(v) < 0 for all v ∈ SW and thus also for all v ∈ W . It follows
that the decomposition Rn = V ⊕W can be used to compute both sgn(λ0f + µ0g) and
sgn(λf + µg) and this gives

Sgn(λ0, µ0) = dim(V )− dim(W ) = Sgn(λ, µ),

for all (λ, µ) ∈ Uδ. This shows that Sgn : S1 − T → Z is a locally constant function.
Since Z is given the discrete topology it follows that Sgn is continuous on all the points
in S1−T . If Ci is a connected component of S1−T , then Sgn(Ci) is also connected. Since
the only connected sets in Z are singleton sets, we see that Sgn(Ci) is a constant. �

Proposition 5.3. Assume that D(λ, µ) 6= 0. For (λ, µ) ∈ S1, the signature of the
quadratic form λf +µg changes only as we pass through a point T on S1 and it changes
by at most twice the dimension of the radical of the form.

Proof. The proof of the first part of this proposition follows from Proposition 5.2. We
now show that as we pass through a point (λ0, µ0) in T on S1µ>0, the signature changes by

at most twice the dimension of the radical of the form λ0f+µ0g. Let rank(λ0f+µ0g) =
r < n. Without loss of generality, we may assume that λ0f + µ0g ∈ R[X1, . . . , Xr]. Let
C1, C2, . . . , Cs denote the connected components of S1 − T. Proposition 5.2 implies that
Sgn is constant on each Ci. Let C1, C2 be the two consecutive components such that
(λ0, µ0) is the point of singularity that disconnects C1 and C2 in S1. The form λf + µg

is nonsingular for all (λ, µ) ∈ C1∪C2. For all (λ, µ) ∈ {C1∪C2∪ (λ0, µ0)}, λ0f +µ0g and
(

λf + µg
∣

∣

Xr+1=···=Xn=0

)

are quadratic forms in r variables, and in this case λ0f + µ0g

is nonsingular when considered as a form in r variables. We define the following map
which is the restriction of Sgn defined above.

Sgn1 : C1 ∪ C2 ∪ {(λ0, µ0)} → Z

(λ, µ) 7→ sgn
(

λf + µg
∣

∣

Xr+1=···=Xn=0

)

From Proposition 5.2, we know that Sgn1 is a locally constant map at points (λ, µ) ∈
C1 ∪ C2 ∪ {(λ0, µ0)} where λf + µg

∣

∣

Xr+1=···=Xn=0
is a rank r quadratic form in the

variables X1, . . . , Xr. Since λ0f + µ0g is a nonsingular form in r variables, we can find
ε > 0 such that

Sgn1(λ, µ) = Sgn1(λ0, µ0) = Sgn(λ0, µ0)

for all (λ, µ) ∈ Bε(λ0, µ0) in S1. Choose (λ, µ) ∈ Bε different from (λ0, µ0). After
performing row and column operations on the symmetric matrix Mλf+µg, it can be
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written in the form
r n− r

































c1 0

r
. . . 0

0 cr

n− r 0 B

As observed from the above matrix,

Sgn(λ, µ) = Sgn1(λ, µ) + sgn(B) = Sgn(λ0, µ0) + sgn(B).

Since | sgn(B)| ≤ n− r, we obtain

| Sgn(λ, µ)− Sgn(λ0, µ0)| ≤ n− r.

Choose (λ1, µ1) ∈ C1 and (λ2, µ2) ∈ C2 such that (λ1, µ1) and (λ2, µ2) lie in Bε. Then,

| Sgn(λ1, µ1)− Sgn(λ2, µ2)|
= | Sgn(λ1, µ1)− Sgn(λ0, µ0) + Sgn(λ0, µ0)− Sgn(λ2, µ2)|
≤ | Sgn(λ1, µ1)− Sgn(λ0, µ0)|+ | Sgn(λ0, µ0)− Sgn(λ2, µ2)|
≤ (n− r) + (n− r) = 2(n− r)

This finishes the proof of the Proposition. �

Example 5.4. Let

f = X2
1 + · · ·+X2

m + am+1X
2
m+1 + · · ·+ anX

2
n

g = bm+1X
2
m+1 + · · ·+ bnX

2
n.

Let sgn(g) = c. Let ε > 0 be a real number. Then for sufficiently small ε, we have
sgn(g+εf) = c+m and sgn(g−εf) = c−m. Then the difference of the two signatures,
which is 2m, equals two times the dimension of the radical of g.

6. Forms in the pencil containing many hyperbolic planes

Recall that K denotes an arbitrary field with characteristic not 2. Let H(X,Y ) ∈
K[X,Y ] be a homogeneous form of degree n ≥ 1. Then H factors in Kalg[X,Y ] as
a product of linear factors and we can write H(X,Y ) =

∏r
i=1 Li(X,Y )ei where each

ei ≥ 1, Li = αiX + βiY ∈ Kalg[X,Y ] is a linear form, 1 ≤ i ≤ r, and L1, . . . , Lr are
distinct in the sense that if i 6= j, then Li and Lj are not scalar multiples of each other.
This is the same as saying that Li and Lj are linearly independent if i 6= j.

Suppose that γ, δ ∈ Kalg, (γ, δ) 6= (0, 0), and H(γ, δ) = 0. Then Li(γ, δ) = 0 for
some unique value of i. In general, we say that (γ, δ) is a zero of H(X,Y ) of multiplicity
e if L(γ, δ) = 0 for some linear form L where Le is the exact power of L dividing H.

Lemma 6.1. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms. Assume that the homo-
geneous polynomial D(λ, µ) = det(λf + µg) of degree n does not vanish identically on
Kalg. If (λ0, µ0) is a zero of D(λ, µ) over Kalg of multiplicity m and r is the rank of
the quadratic form λ0f + µ0g, then m ≥ n− r.

Proof. Since the homogeneous polynomial D(λ, µ) does not vanish on Kalg, D(λ, µ) has
only finitely many linear forms (up to scalar multiplication) that occur as factors of D.
Let (λ0, µ0) be a nontrivial zero of D(λ, µ). We can assume that µ0 6= 0. After an
invertible linear change of variables, we can diagonalize and rewrite λ0f + µ0g as

λ0f + µ0g = b1X
2
1 + · · ·+ brX

2
r ,
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where rank(λ0f + µ0g) = r < n. Then

λf + µg = λf + µ
λ0f + µ0g − λ0f

µ0

=

(

λ− λ0

µ0
µ

)

f +
µ

µ0
(b1X

2
1 + · · ·+ brX

2
r )

Let M denote the symmetric matrix corresponding to the quadratic form λf+µg. Then

D(λ, µ) = det(M), where the matrix M is as shown below and α =

(

λ− λ0

µ0
µ

)

:

r n− r








































αa11 +
µb1
µ0

∗
r

. . . ∗
∗ αarr +

µbr
µ0

αar+1,r+1 ∗
n− r ∗ . . .

∗ αann

Each term of the last n−r rows of M contains a factor of α =

(

λ− λ0

µ0
µ

)

. This implies

that

(

λ− λ0

µ0
µ

)n−r

divides D(λ, µ) over Kalg. Thus the linear factor (µ0λ − λ0µ)

appears at least n − r times in the linear factor decomposition of D(λ, µ) over Kalg.
Therefore, m(λ0,µ0) ≥ n− r. �

For x ∈ R, recall that ⌈x⌉ denotes the least integer greater than or equal to x.

Lemma 6.2. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms such that the determinant
polynomial D(λ, µ) = det(λf+µg) over K is not identically zero. Let L be an extension

of K with K ⊆ L ⊆ Kalg, and let r ≤
⌈

n
2

⌉

be a positive integer. Then the following

statements are equivalent.

(a) Every form in PK(f, g) has rank at least r.
(b) Every form in PKalg(f, g) has rank at least r.
(c) Every form in PL(f, g) has rank at least r.

Proof. Since K ⊆ L ⊆ Kalg, if every form in PKalg(f, g) has rank at least r, then every
form in PL(f, g) has rank at least r, which further implies that every form in PK(f, g)
has rank at least r. This shows that (b) ⇒ (c) ⇒ (a). We finish the proof by showing
that (a) ⇒ (b).

Suppose that every form in PK(f, g) has rank at least r, and suppose that there
exists a form αf + βg in PKalg(f, g) such that

rank(αf + βg) ≤ r − 1.

We can assume that either α = 1 or β = 1 because (α, β) 6= (0, 0) and (α, β) can be
multiplied by any nonzero element of Kalg. Assume that α = 1. (The other case is
handled similarly.) Then (1, β) is a zero of the determinant polynomial D(λ, µ) and
Lemma 6.1 implies that

m(1,β) ≥ n− (r − 1) ≥ n−
(⌈n

2

⌉

− 1
)

=







n

2
+ 1, if n is even

n+ 1

2
, if n is odd

>
n

2
.
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The same inequality holds for each conjugate of (1, β). Since the degree of D(λ, µ)
is n, it follows that (1, β) has only one conjugate, and thus β ∈ K, a contradiction to
(a). Hence every form in PKalg(f, g) has rank at least r. �

Example 6.3. This example shows that Lemma 6.2 fails to hold if r > ⌈n2 ⌉. Let

f = X2
1 −X2

2 and g = 2X1X2. Then each form in PR(f, g) has rank 2 > ⌈n2 ⌉ because

det(λf + µg) = det

(

λ µ

µ −λ

)

= −(λ2 + µ2). But over C, there are two forms of rank

1. Namely, f + ig = (X1 + iX2)
2 and f − ig = (X1 − iX2)

2.

Proposition 6.4. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms and assume that at least
one of f, g has rank n. Suppose that every form in PR(f, g) has rank at least r. Then

there exists a rank n form in PR(f, g) that splits off at least
⌈r

2

⌉

hyperbolic planes over

R, where

⌈r

2

⌉

=







r

2
if r is even

r + 1

2
if r is odd.

Proof. Assume that no rank n form λf +µg in PR(f, g) splits off ⌈ r2⌉ hyperbolic planes.
Let h ∈ PR(f, g) be any form having rank n and suppose that h splits off exactly j

hyperbolic planes where j ≤ ⌈ r2⌉ − 1. Then Lemma 2.7 implies that

h ∼= X1X2 + · · ·+X2j−1X2j + h′(X2j+1, . . . , Xn),

where h′ is definite. Thus

| sgn(h)| = | sgn(h′)| = n− 2j ≥ n− 2
(⌈r

2

⌉

− 1
)

for any form h ∈ PR(f, g) having rank n. Let

T = {(λ, µ) ∈ S1 | det(λf + µg) = 0},
and let Ci, 1 ≤ i ≤ t, denote the connected components in S1 − T . Since Sgn is an
odd function, there are two adjacent connected components on S1 where the signature
jumps from being positive to negative or vice versa. Therefore, there must be a jump

of at least 2
(

n− 2
(⌈r

2

⌉

− 1
))

for the signature as (λ, µ) varies on S1. By Proposition

5.3, such a jump occurs only when (λ, µ) passes through a point in T , and the jump is
bounded above by twice the dimension of the radical of the associated singular form.
Let λ0f + µ0g be that singular form in PR(f, g) and let r0 = rank(λ0f + µ0g). Then
the jump in the signature as we pass through (λ0, µ0) is bounded above by 2(n − r0).
Therefore,

2
(

n− 2
(⌈r

2

⌉

− 1
))

≤ 2(n− r0)

−2
(⌈r

2

⌉

− 1
)

≤ −r0

r0 ≤ 2
(⌈r

2

⌉

− 1
)

< r,

which is a contradiction because every form in PR(f, g) has rank at least r. Hence there

exists (λ, µ) ∈ S1 such that rank(λf + µg) = n and splits off at least
⌈r

2

⌉

hyperbolic

planes. �

Example 6.5. Let n ≥ 2 and let

f = r1X
2
1 + r2X

2
2 + · · ·+ rnX

2
n

g = X2
1 +X2

2 + · · ·+X2
n.
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Assume that r1, . . . , rn ∈ R and r1 < r2 < · · · < rn. If n is even, choose t ∈ R such
that rn

2
< t < rn

2
+1. If n is odd, choose t ∈ R such that either rn−1

2

< t < rn+1

2

or

rn+1

2

< t < rn+1

2
+1. Let h = f − tg. Then h has rank n and

sgn(h) =

{

0 if n is even

1 or − 1 if n is odd.

Every form in the R-pencil of f, g has rank ≥ n − 1 and h splits off exactly ⌈n−1
2 ⌉

hyperbolic planes. This shows that the bound in Proposition 6.4 is optimal.

Example 6.6. Let K be a field with charK 6= 2 and let n = 2m+ 1, m ≥ 1. Let

fm = X1X2 +X3X4 + · · ·+X2m−1X2m

gm = X2X3 +X4X5 + · · · +X2mX2m+1.

Every quadratic form in PK(fm, gm) can be written

afm + bgm = X2(aX1 + bX3) + · · ·+X2m(aX2m−1 + bX2m+1).

Thus every such form in PK(fm, gm) has rank 2m. Every quadratic form in PK(fm, gm)
splits off exactly 2m

2 = m hyperbolic planes. Note that D(λ, µ) = det(λfm + µgm) = 0
and that no form in PK(fm, gm) has rank n.

Pairs of quadratic forms, such as those in Example 6.6 and Theorem 6.7, are essen-
tial for classifying pairs of quadratic forms over fields K with charK 6= 2. We state
Theorem 6.7 without proof, but the interested reader can find a proof and additional
details in [5, Theorem 3.3] and [9, Theorems 3.1, 3.3].

Theorem 6.7. Let K be an infinite field with charK 6= 2. Let f, g ∈ K[X1, . . . , Xn] be
quadratic forms and assume that rad(f)∩ rad(g) = 0. Then there exist uniquely defined
positive integers m1, . . . ,mj, j ≥ 0, such that the pair f, g is equivalent to

f ∼= fm1
⊥ · · · ⊥ fmj

⊥ q2(XM+1, . . . , XM+N )

g ∼= gm1
⊥ · · · ⊥ gmj

⊥ q′2(XM+1, . . . , XM+N ),

and such that the determinant polynomial D(λ, µ) = det(λq2 + µq′2) over K is not

identically zero, M =
∑j

i=1(2mi + 1), and M +N = n.

Theorem 6.7 allows us to prove a stronger version of Proposition 6.4 where we can
weaken the hypothesis and still conclude the same result.

Theorem 6.8. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms and assume that rad(f) ∩
rad(g) = 0. Suppose that every form in PR(f, g) has rank at least r. Then there exists

a form in PR(f, g) that splits off at least
⌈r

2

⌉

hyperbolic planes over R, where

⌈r

2

⌉

=







r

2
if r is even

r + 1

2
if r is odd.

Proof. Let q1 = fm1
⊥ · · · ⊥ fmj

and q′1 = gm1
⊥ · · · ⊥ gmj

in the notation of
Theorem 6.7. Every form in PK(q1, q

′
1) has rank 2(m1 + · · ·+mj) and splits off m1 +

· · · +mj hyperbolic planes. The determinant polynomial det(λq2 + µq′2) 6= 0 and only
finitely many forms in PR(q2, q

′
2) have rank less than N . Every form in PR(q2, q

′
2) has

rank at least R := r−2(m1+ · · ·+mj). By Proposition 6.4, there exists a rank N form

in PR(q2, q
′
2) that splits off at least ⌈R2 ⌉ hyperbolic planes. Therefore, there exists a form

in PR(f, g) that splits off at least (m1 + · · ·+mj) + ⌈R2 ⌉ = ⌈ r2⌉ hyperbolic planes. �
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Remark 6.9. If a quadratic form in n variables splits off k hyperbolic planes, then

2k ≤ n. Thus Proposition 6.4 implies that 2
⌈r

2

⌉

≤ n. If r is even, this gives r ≤ n. If

r is odd, this gives r + 1 ≤ n, so r ≤ n− 1. That is, if r is odd, it is not possible that
every form in PR(f, g) has rank r = n. Here is a way to see this directly. Suppose that
r = n is odd. Then D(λ, µ) = det(λf +µg) is a homogeneous form of odd degree n over
R. Since every form of odd degree over R has at least one nontrivial zero, there exist
λ0, µ0 ∈ R, not both zero, such that λ0f +µ0g is singular, and so rank(λ0f +µ0g) < n.
Therefore, in Proposition 6.4, if r is odd, then r < n.

7. Nonsingular zeros and simultaneous diagonalization

Definition 7.1 (Nonsingular Zero). Let f, g ∈ K[X1, . . . , Xn] be quadratic forms.

(1) A vector v ∈ Kn is a nonsingular zero of f if f(v) = 0, and

∂f

∂X
(v) =

(

∂f

∂X1
(v), . . . ,

∂f

∂Xn
(v)

)

is not the zero vector, and is a singular zero otherwise.
(2) A vector v is a nonsingular common zero of a pair of quadratic forms f, g if

f(v) = g(v) = 0, and the vectors

∂f

∂X
(v),

∂g

∂X
(v)

are linearly independent over K, and is a singular common zero otherwise.
(3) We say that f, g is a nonsingular pair of quadratic forms if every nontrivial

common zero of f, g defined over Kalg is a nonsingular zero.

Proposition 7.2. Let n ≥ 2 and let f , g ∈ K[X1, . . . , Xn] be a nonsingular pair of
quadratic forms. Then every form in PK(f, g) has rank at least n− 1.

Proof. Assume that there exists a form in PK(f, g) having rank at most n− 2. We can
assume that g = g(X1, . . . , Xn−2). Let h(Xn−1, Xn) = f(0, . . . , 0, Xn−1, Xn). There
exist a, b ∈ Kalg, with (a, b) 6= (0, 0), such that h(a, b) = 0. Then (0, . . . , 0, a, b) is a
nontrivial singular zero of f = g = 0. �

For quadratic forms f, g,∈ K[X1, . . . , Xn], if D(λ, µ) is nonzero, then D(λ, µ) factors
as a product of linear factors over Kalg. Then next result shows that the linear factors
are distinct up to nonzero scalar factors in Kalg if and only if f, g is a nonsingular pair.

Proposition 7.3. Let K be a field with charK 6= 2 and let f , g ∈ K[X1, . . . , Xn] be
quadratic forms. The following statements are equivalent.

(1) f, g is a nonsingular pair of quadratic forms.
(2) The homogeneous polynomial D(λ, µ) = det(λf + µg) has no repeated linear

factors over Kalg.

Proof. (2) ⇒ (1). Suppose that a = (a1, . . . , an) is a nontrivial singular zero of f =
g = 0 where each ai ∈ Kalg. We can assume that this singular zero has coordinates
(1, 0, . . . , 0). Then

f = X1L1(X2, . . . , Xn) +Q1(X2, . . . , Xn),

where L1 is a linear form and Q1 is a quadratic form. Similarly,

g = X1L2(X2, . . . , Xn) +Q2(X2, . . . , Xn).

It follows from Definition 7.1 that L1, L2 are linearly dependent. Thus there exist
c, d ∈ Kalg, not both zero, such that cL1 + dL2 = 0. We can assume that d 6= 0 by
interchanging f and g if necessary. Then we can assume that L2 = 0 by replacing f, g



68 LEEP AND SAHAJPAL

with f, cf + dg. Thus λ divides each entry of the first row and column of λMf + µMg

and its (1, 1)-entry is zero. It follows that λ2 | D(λ, µ), a contradiction.
(1) ⇒ (2). Suppose that D(λ, µ) has a linear factor of multiplicity at least 2 over

Kalg. By choosing appropriate linear combinations of f, g in place of f, g, we can assume
that λ2 | D(λ, µ). Then the coefficient of µn in D(λ, µ) is zero, and thus det(Mg) = 0,
which implies that g has rank at most n−1. If g has rank at most n−2, then f = g = 0
has a singular zero over Kalg by Proposition 7.2. Thus g has rank n − 1. We can
assume that g = g(X2, . . . , Xn). Then g(1, 0, . . . , 0) = 0 and (1, 0, . . . , 0) ∈ rad(g),
where (1, 0, . . . , 0) denotes the point where X1 = 1 and Xi = 0 for i ≥ 2. Since the first
row and column of Mg are both zero, the coefficient of λµn−1 in D(λ, µ) is given by the
(1, 1)-entry of Mf times the determinant of the lower right (n− 1)× (n− 1) submatrix
of Mg. The coefficient of λµn−1 in D(λ, µ) is zero because λ2 divides D(λ, µ). Since
rank(g) = n−1, it follows that the (1, 1)-entry of Mf is zero and thus f(1, 0, . . . , 0) = 0.
Therefore, (1, 0, . . . , 0) is a singular zero of f = g = 0 because (1, 0, . . . , 0) ∈ rad(g). �

The converse of Proposition 7.2 does not hold in general, as shown in the next
example, but we show in Proposition 7.8 that the converse does hold if f and g are
simultaneously diagonalized as above.

Example 7.4. Let f = 2X1X2, g = X2
2 . Then every form in PR(f, g) has rank at least

1 but (1, 0) is a singular zero of the pair f, g. We have D(λ, µ) = det(λf + µg) = −λ2,
and so D(λ, µ) does not have distinct linear factors, as predicted by Proposition 7.3.

Lemma 7.5. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms and suppose that rank(g) <
n. If either f, g have no nontrivial common zero over K or λ2 ∤ D(λ, µ), then the pair
f, g is equivalent over K to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0.

Proof. There is an invertible linear change of variables over K that lets us assume that
g = g(X2, . . . , Xn). Let P = (1, 0, . . . , 0). We can write

f = a1X
2
1 +X1L(X2 . . . , Xn) +Q(X2, . . . , Xn)

where L,Q ∈ K[X2, . . . , Xn] with L a linear form and Q a quadratic form.
Suppose that a1 = 0. Then f(P ) = a1 = 0 and g(P ) = 0. In addition, a straight-

forward computation shows that λ2 | D(λ, µ). One of these statements contradicts our
hypotheses, and thus a1 6= 0.

We have

f = a1

(

X1 +
1

2a1
L

)2

+Q− 1

4a1
L2.

Let X ′
1 = X1 +

1
2a1

L and f1 = Q− 1
4a1

L2. Then f = a1(X
′
1)

2 + f1 and so the pair f, g
is equivalent to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where f1, g1 ∈ K[X2, . . . , Xn] are quadratic forms. �

Theorem 7.6. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms and assume that D(λ, µ)
is a product of linear factors defined over K. If either f, g have no nontrivial common
zero over K or D(λ, µ) has no repeated linear factors, then f, g can be simultaneously
diagonalized over K.
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Proof. Since D(λ, µ) = det(λf + µg) has a linear factor defined over K, some form in
PK(f, g) has rank at most n − 1. By choosing appropriate generators of PK(f, g), we
can assume that rank(g) < n. Since either f, g have no nontrivial common zero over K
or λ2 ∤ D(λ, µ), Lemma 7.5 implies that the pair f, g is equivalent over K to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0.
Suppose that m is maximal such that f, g are equivalent over K to

f = a1X
2
1 + · · ·+ amX2

m + q(Xm+1, . . . , Xn)

g = b1X
2
1 + · · ·+ bmX2

m + q′(Xm+1, . . . , Xn),

where q, q′ ∈ K[Xm+1, . . . , Xn] are quadratic forms. Then m ≥ 1. Suppose that m < n.
By unique factorization in K[λ, µ] it follows that det(λq+ µq′) is a product of linear

factors defined over K. In addition, either q, q′ have no nontrivial common zero defined
over K or det(λq + µq′) has no repeated linear factors. Repeating the argument at the
beginning of this proof gives a contradiction to the maximality of m. Therefore, m = n,
as desired. �

The next result shows that a nonsingular pair of quadratic forms can always be
simultaneously diagonalized over an algebraically closed field.

Proposition 7.7. Let f, g ∈ K[X1, . . . , Xn] be a nonsingular pair of quadratic forms.
Then f, g can be simultaneously diagonalized over Kalg.

Proof. Proposition 7.3 implies thatD(λ, µ) = det(λf+µg) is a product of distinct linear
factors over Kalg up to nonzero scalar factors in K. The previous theorem implies that
f, g can be simultaneously diagonalized over Kalg. �

Suppose that f, g ∈ K[X1, . . . , Xn] are simultaneously diagonalized quadratic forms.
Then

f = a1X
2
1 + a2X

2
2 + · · ·+ anX

2
n

g = b1X
2
1 + b2X

2
2 + · · ·+ bnX

2
n,

where each ai, bj ∈ K. Assume that (ai, bi) 6= (0, 0) for each i. Then

D(λ, µ) = det(λf + µg) =
n
∏

i=1

(λai + µbi)

is a nonzero homogeneous form of degree n.
The next result gives additional characterizations of a nonsingular pair of quadratic

forms f, g in the case that f, g are simultaneously diagonalized.

Proposition 7.8. Suppose that f, g ∈ K[X1, . . . , Xn] are simultaneously diagonalized
quadratic forms, as above, with (ai, bi) 6= (0, 0) for each i. Then the following statements
are equivalent.

(1) f, g is a nonsingular pair of quadratic forms.
(2) D(λ, µ) has no repeated linear factors over Kalg.

(3) Every form in PK(f, g) has rank at least n− 1.
(4) aibj − ajbi 6= 0 for every i 6= j.

Proof. We have already seen in Proposition 7.3 that (1) and (2) are equivalent, and
in Proposition 7.2 that (1) ⇒ (3). We will prove that the negations of (2), (3), (4)
are equivalent. Statement (2) is false ⇔ there exists c ∈ K× and i 6= j such that
c(λai+µbi) = λaj+µbj ⇔ there exists c ∈ K× and i 6= j such that aj = cai and bj = cbi
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⇔ there exists c ∈ K× and i 6= j such that

(

ai aj
bi bj

)(

c

−1

)

=

(

0
0

)

⇔ statement (4) is

false. The last equivalence uses the assumption that each (ai, bi) 6= (0, 0).
Statement (3) is false ⇔ there exist r, s ∈ K, not both zero, such that rf + sg

has rank at most n − 2 ⇔ there exist r, s ∈ K, not both zero, and i 6= j such that
rai + sbi = raj + sbj = 0 ⇔ there exist r, s ∈ K, not both zero, and i 6= j such that
(

ai bi
aj bj

)(

r

s

)

=

(

0
0

)

⇔ statement (4) is false. �

Let A =

(

ai aj
bi bj

)

. Note that the proof of the equivalence of (2) and (4) used the

matrix A, and the proof of the equivalence of (3) and (4) used the matrix At.
If charK = 2, then the characterization of nonsingular pairs of quadratic forms is

much more difficult. See [6].

8. Simultaneous diagonalization over the real numbers and the Spectral

Theorem

In this section, we include additional results on nonsingular pairs of quadratic forms
and simultaneous diagonalization that are specific to R.

Proposition 8.1. Let f, g ∈ R[X1, . . . , Xn] be a nonsingular pair of quadratic forms.
Then there exists a nonsingular form in PR(f, g) that splits off ⌈n−1

2 ⌉ hyperbolic planes
over R.

Proof. Since every nontrivial zero of f = g = 0 is nonsingular, Proposition 7.2 implies
that each form in PR(f, g) has rank at least n − 1. Proposition 6.4 implies that there
exists a nonsingular form in PR(f, g) that splits off at least ⌈n−1

2 ⌉ hyperbolic planes

over R. Since 2(⌈n−1
2 ⌉+ 1) > n, it follows that this nonsingular form splits off exactly

⌈n−1
2 ⌉ hyperbolic planes over R. �

Remark 8.2. If n = 8, Proposition 8.1 implies that there is a nonsingular form in
PR(f, g) that splits off 4 hyperbolic planes. This strengthens a result in [3, Lemma
12.1], where it is proved that there exists a nonzero form in PR(f, g) that splits off at
least 3 hyperbolic planes.

Lemma 8.3. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms. Suppose that D(λ, µ) =
det(λf + µg) has no linear factors defined over R. Then every form h ∈ PR(f, g) has
rank n, n is even, and sgn(h) = 0.

Proof. The hypothesis implies that n ≥ 2. Proposition 5.2 implies that sgn(h) is the
same for all h ∈ PR(f, g) because T (as defined prior to Lemma 5.1) is the empty set.
Since sgn(−h) = − sgn(h), it follows that each h ∈ PR(f, g) has sgn(h) = 0. The
hypothesis implies that every form in PR(f, g) has rank n. Thus n is even. �

Theorem 8.4. If f, g ∈ R[X1, . . . , Xn] are quadratic forms and f is definite, then
D(λ, µ) is a product of linear factors defined over R and f, g can be simultaneously
diagonalized over R.

Proof. The proof is by induction on n ≥ 1, with the case n = 1 being obvious. Assume
that n ≥ 2 and that the result is true for fewer than n variables.

First suppose that D(λ, µ) has no linear factor defined over R. Then Lemma 8.3
implies that each h ∈ PR(f, g) has rank n and signature 0. This is a contradiction
because f is definite and thus has signature ±n. Then some form in PR(f, g) has rank
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at most n − 1. By choosing appropriate generators of PR(f, g), we can assume that
rank(g) < n. Lemma 7.5 implies that f, g is equivalent to the pair

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0. The pair f1, g1 satisfies the hypotheses because f1 is definite. By
induction it follows that det(λf1+µg1) is a product of linear factors defined over R and
f1, g1 can be simultaneously diagonalized over R. Then the same holds for f, g. �

Corollary 8.5. If n ≥ 3, and f, g ∈ R[X1, . . . , Xn] are quadratic forms having no
nontrivial common zero over R, then f, g can be simultaneously diagonalized over R.

Proof. Since n ≥ 3 and f, g have no nontrivial common zero defined over R, Proposi-
tion 4.4 implies that there is a form h ∈ PR(f, g) that is definite. The result now follows
from the previous theorem. �

Example 8.6. This example shows that the previous corollary is false when n = 2.
Let f = 2X1X2 and g = X2

1 − X2
2 . The pair f, g is an anisotropic pair because there

is no nontrivial common zero of f, g with either X1 = 0 or X2 = 0. The pair cannot
be simultaneously diagonalized because D(λ, µ) = det(λf + µg) = −(λ2 + µ2) has no
linear factors defined over R.

These results lead to a proof of the Spectral Theorem. Much of the proof below is
standard linear algebra but is included for the sake of completeness.

Theorem 8.7 (Spectral Theorem). Let A be an n × n symmetric matrix with entries
in R. Then the following statements hold.

(1) Every eigenvalue of A is real.
(2) There exists an n×n orthogonal matrix P with entries in R such that P tAP is

a diagonal matrix.
(3) A has n pairwise orthogonal (and thus linearly independent) eigenvectors in Rn.

Proof. Let g(X1, . . . , Xn) = XtAX where X is the column vector (X1, . . . , Xn)
t and let

f(X1, . . . , Xn) = XtInX where In is the n×n identity matrix. Thus f = X2
1 + · · ·+X2

n.
Since f is positive definite, the pair f, g can be simultaneously diagonalized over R
by Theorem 8.4. Thus there exists an n × n invertible matrix M with entries in R
such that M tAM = D1 and M tInM = D2 are both diagonal matrices. Since D2

must be positive definite, each entry on the main diagonal of D2 is positive. Then
D2 = D2

3 for some invertible diagonal matrix D3 with entries in R. Let P = MD−1
3 .

Then P tAP = (D−1
3 )tM tAMD−1

3 = D−1
3 D1D

−1
3 = D−1

2 D1 is a diagonal matrix, and

similarly, P tInP = D−1
3 D2D

−1
3 = In. Thus P

tP = In and so P is an orthogonal matrix.
It follows that the columns of P are pairwise orthogonal and thus linearly independent.

We have P−1AP = P tAP = D−1
2 D1, which gives AP = P (D−1

2 D1). Let D−1
2 D1 =

diag(d1, . . . , dn). Let v1, . . . , vn be the columns of P . The equation AP = P (D−1
2 D1)

implies that Avi = divi for 1 ≤ i ≤ n. Thus the columns of P are pairwise orthogonal
eigenvectors of A with eigenvalues d1, . . . , dn. These eigenvalues of A are real because
the diagonal matrices D1 and D2 have real entries. �
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