
Irish Math. Soc. Bulletin

Number 91, Summer 2023, 37–47
ISSN 0791-5578

Segre’s theorem on ovals in Desarguesian projective planes

PATRICK J. BROWNE, STEVEN T. DOUGHERTY AND PADRAIG Ó CATHÁIN

Abstract. Segre’s theorem on ovals in projective spaces is an ingenious result from
the mid-twentieth century which requires surprisingly little background to prove. This
note, suitable for undergraduates with experience of linear and abstract algebra, pro-
vides a complete and self-contained proof. All necessary pre-requisites, principally
evaluation of homogeneous polynomials at projective points and Desargues’ theorem
are presented in full. While following the broad outline of Segre’s proof, careful pa-
rameterisation of certain tangent lines results in shorter and simpler computations
than the original.

One of the most significant advances in the history of mathematics was the discovery
in the 17th century, principally by Descartes, that geometry could be understood in
algebraic terms. For example, a circle is defined geometrically as the set of points
equidistant from a given point. Algebraically, this could be understood as the set of
x and y satisfying (x − a)2 + (y − b)2 = r2. Within this framework lines and conic
sections could be described in an algebraic manner. The power of this connection was
that one could maintain geometric intuition but have the power of algebra to construct
rigorous proofs. It is no exaggeration to say that this discovery led to the development
of calculus, differential equations, linear algebra and most of modern mathematics. In
this paper, we shall investigate a fascinating connection between a geometric object and
an algebraic description, this time in a finite projective space.

The study of projective geometry has its roots in the attempts of renaissance artists
to accurately depict three dimensional scenes on a two-dimensional canvas. In the eigh-
teenth century, it was realised that the mathematical study of geometry is rather easier
in projective spaces than in Euclidean spaces, and projective geometries remain central
objects in modern mathematics. In this note we consider only the lowest dimensional
projective spaces, which are projective planes. Our purpose is to prove a theorem of
Segre identifying certain combinatorial configurations with the set of points at which
a suitable polynomial vanishes, [12]. The most important step in the proof is the cele-
brated Lemma of the Tangents, for which several ‘co-ordinate free’ proofs are available,
[4, 2]. Our purpose is to present an accessible account, broadly similar to Segre’s but
with all necessary background material and improving on certain technicalities in the
original proof.

Projective planes may be defined axiomatically as follows.

Definition 0.1. A projective plane consists of points, lines and an incidence relation
relating points and lines which obey the following axioms:

(1) There is a unique line incident with any two distinct points.
(2) Any two distinct lines are incident with a unique point.
(3) There exist four points, no three incident with a line.
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The third axiom is necessary so that certain degenerate geometric objects are not
planes (e.g. where all points lie on a single line). A projective plane may be constructed
from a two-dimensional vector space by ‘completing’ the space with a number of points
at infinity1. It is more convenient mathematically to begin with a three dimensional
vector space. Define projective points to be one dimensional subspaces and projective
lines to be two dimensional subspaces, with incidence given by containment2.

Verifying the axioms for a projective plane requires only elementary linear algebra:

(1) Two distinct one-dimensional subspaces span a unique two-dimensional space.
(2) Two distinct two-dimensional subspaces must intersect in a one-dimensional

space (because both spaces live in a three dimensional space - this claim would
not hold if we began with a vector space of dimension ≥ 4).

(3) There exist four lines, any three of which span the space, consider for example
the lines spanned by

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) ,

with respect to an arbitrary basis.

While a projective plane is constructed from a three dimensional vector space, it
is really a two-dimensional object: the points of the form [1 : y : z] clearly form a
two dimensional plane, while the remaining points [0 : 1 : z] and [0 : 0 : 1] are often
called points at infinity. Each parallel class of lines meets at a point at infinity, and all
points at infinity are collinear. By having these two distinct descriptions of the same
space, we are able to use whichever one is easier to construct a proof of a given result.
Vanishing points in perspective drawing may be considered points at infinity, and (at
least with one eye closed) we perceive the real projective plane visually, as opposed to
three dimensional Euclidean space.

Particular interest pertains to the projective planes constructed over finite fields, in
which case the number of points and lines in the plane is finite. There exists a finite field,
unique up to isomorphism, of any prime power order q, which we denote Fq, [9]. (For
the less experienced reader, the field of prime order p is precisely the integers modulo
p. Nothing is lost by considering this case throughout the paper.) It is an easy exercise
to see that the number of one- and two-dimensional subspaces of a three-dimensional
vector space over Fq is q2 + q + 1, while the number of one-dimensional subspaces in a
two-dimensional space is q + 1. We conclude that a finite projective plane constructed
from a vector space necessarily has q2 + q + 1 points and an equal number of lines.
Additionally, there are q + 1 points incident with any line, and q + 1 lines incident
with any point. Projective planes have been considered by mathematicians of the
highest calibre: Hilbert and Artin both wrote undergraduate-accessible accounts of the
foundations of geometry with a particular emphasis on projective planes, [7, 1]. Finite
projective planes are a more specialised topic, to which monographs have nevertheless
been devoted. Hughes and Piper, and one of the authors have written at advanced
undergraduate level, while Dembowski’s work is more demanding, [8, 6, 5].

We typically denote the line {(at, bt, ct) : t ∈ Fq} by the projective (or homogeneous)
coordinates [a : b : c]. Sometimes it is convenient to normalise projective coordinates so
that the first non-zero entry is 1: provided a is non-zero the projective points [a : b : c]
and [1 : a−1b : a−1c] are equal.

1There is nothing infinite about these points in a finite plane. In the infinite projective plane formed
from a Euclidean plane, such points would seem to be located at an infinite distance from every other
point.

2The reader should be aware that the projective dimension is typically one less than the standard
vector-space dimension. In the remainder of this note, dimensions are projective.
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Definition 0.2. A projective plane is Desarguesian if it is constructed from a three
dimensional vector space over a field (or more generally, a division algebra). Equiva-
lently, if it admits projective co-ordinates in a field (or division ring). The projective
plane over the field F is denoted PG2(F). Otherwise, it is non-Desarguesian.

In this note we consider only Desarguesian projective planes over finite fields. The
Desarguesian plane over a field of order q is said also to be of order q, though note that
there are q+1 points on each line. There do exist finite projective planes that are non-
Desarguesian. The smallest of these has 91 = 92+9+1 points. Some planes of this type
may be constructed from so-called quasi-fields, but others seem to have no discernible
algebraic structure. It is one of the foundational questions of finite projective planes to
determine for which orders non-Desarguesian planes exist. It is known that there is no
such plane containing 43 = 62+6+1 points or 111 = 102+10+1 points, but existence
is open for a plane on 157 = 122 + 12 + 1 points, and for infinitely many larger values.

1. Conics and ovals in a projective plane

Because a projective point corresponds to many distinct points in the underlying
vector space, it does not make sense to evaluate a polynomial at a projective point, but
it does make sense to ask whether a homogeneous polynomial is zero or non-zero at a
projective point, as

F (λx, λy, λz) = λkF (x, y, z)

for a homogeneous polynomial of degree k. The locus of points at which a homogeneous
polynomial in three variables evaluates to zero on a Desarguesian projective plane is
called the variety of the polynomial. We make no attempt to develop the theory of
algebraic varieties, the interested reader is referred to Shafarevich, Chapter 1 [13].

(1) A homogeneous polynomial of degree 1 describes a line in a projective plane.
For example, the equation y = 0 describes the projective points [1 : 0 : z] with
z ∈ Fq together with the point [0 : 0 : 1]. Setting x+2y− z = 0 gives the points
[x : y : x + 2y] where x, y ∈ Fq. While it may not appear that this set is one
dimensional, working projectively and setting z = y

x
gives the set [1 : z : 1 + 2z]

where z ∈ Fq together with the point [0 : 1 : 2].
(2) Over the real field homogeneous polynomials of degree 2 describe circles, ellipses

and hyperbolae. Arguably the greatest achievement of ancient Greek geometry
was the unified treatment of these different varieties by considering the inter-
section of a plane and a cone in three dimensional space, leading to the name
conic sections for homogeneous polynomials of degree 2.

In analogy with the real case, we call a homogeneous polynomial of degree
two over any field a conic. We shall see shortly that the theory of conics over
a finite field is quite different from the case of the real field. The points of the

conic x2 + y2 + z2 correspond to projective points [x : y :
√

−x2 − y2] which
is an empty set over the real field. On the other hand, it can be verified that
42 = −(12+22) mod 7 so this variety is non-empty over F7. We shall see shortly
via purely geometric arguments that a non-degenerate conic section over a finite
field of odd order q will always have q + 1 points.

It will frequently be helpful to think of a variety as the graph of a function on a
two-dimensional plane. This is achieved in the following way: one breaks the analysis
into points in the 2-dimensional plane [1 : y : z], in which the homogeneous equation
F (x, y, z) = 0 can be rewritten as y = f(z), and then one considers the points at infinity
separately. (Of course, normalising as [x : y : 1] would move a different line to infinity
and give a different view of the same variety.)
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Recall that a tangent to a conic is a line meeting the curve at a single point. The
tangent to a curve is routinely found by linearising the curve (which is achieved over R
by computing a normal vector using partial derivatives and taking the orthogonal com-
plement). To a surprising extent, the geometric intuition over R which is the foundation
for calculus carries through to finite fields, though there is no longer any convergence
(and so ǫ − δ arguments no longer hold). In this note we take formal derivatives over
finite fields. The ordinary formulae continue to hold, though they require an entirely
different justification, which would lead us too far from the topic of the paper. We
justify this by claiming that these methods are provided for illustration, and are not
required in the proof of the main theorem. In any case, we define a tangent to a variety
over a finite field to be a line meeting the variety in a unique point.

Proposition 1.1. Let F (x, y, z) be a homogeneous function, and V its variety in pro-
jective space. The tangent space to F at v ∈ V is the orthogonal complement to the
normal vector ∇F = [∂F

∂x
: ∂F

∂y
: ∂F

∂z
] evaluated at v (with respect to the standard inner

product).

This is perhaps best illustrated by an example.

Example 1.2. Consider the conic F (x, y, z) = x2 − yz over a field with at least 3
elements. Normalising the z co-ordinate shows that this is just the standard quadratic
function y = x2, completed by the point [0 : 1 : 0] at infinity.

The normal vector to F is given by ∇F = [∂F
∂x

: ∂F
∂y

: ∂F
∂z

] = [2x : −z : −y], and the

tangent line at a point is the orthogonal complement of this vector.
For example, the point p = [1 : 1 : 1] is in the variety of F by inspection. The normal

vector at this point is [2 : −1 : −1] which is orthogonal to, for example, [0 : 1 : −1].
Thus a parametrisation of the tangent line at p is given by Tp = p + t[0 : 1 : −1] =
[1 : 1 + t : 1 − t], where t is a parameter taking values in Fq together with the point
[0 : 1 : −1]. It is easily verified that Tp is tangent to the variety: substituting a generic
point on the line into F (x, y, z) gives the equation

1− (1 + t)(1− t) = t2 = 0

which has a unique solution. Hence, Tp intersects the variety only at p.

The choice of vector orthogonal to ∇F (x, y, z) is far from unique. Nevertheless,
the resulting tangent line is unique (provided the defining equation satisfies technical
conditions which will always be met in this paper), though the parameterisation may
not be. Considering the tangent line as a two-dimensional subspace in the underlying
three-dimensional vector space and reflecting on the non-uniqueness of bases for such
spaces may assist the reader.

Definition 1.3. A conic in projective space is the locus of points of a homogeneous
polynomial of degree 2. A conic is non-degenerate if it is non-empty and does not
contain an entire projective line.

We note that this is a purely algebraic description of a conic, though motivated by
the geometry of the real field.

Proposition 1.4. A non-degenerate conic in PG2(Fq) contains q + 1 points. A non-
degenerate conic meets a line in at most two points.

Proof. The generic equation for a conic in PG2(Fq) is F (x, y, z) = αx2+βy2+γz2+δxy+
ǫxz+ζyz. The normal vector is ∇F (x, y, z) = [2α+δy+ǫz : 2β+δx+ζz : 2γ+ǫx+ζy],
which is linear in x, y, z. A conic is non-degenerate if and only if ∇F (x, y, z) is non-
zero for all [x : y : z] in the corresponding variety. In this case, the normal vector
uniquely determines a one-dimensional subspace in the underlying three dimensional
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vector space. This has a unique two-dimensional orthogonal complement, which is the
tangent line to the projective variety.

For the second claim, let p be a point on the conic F . Since there is a unique
tangent to the curve at p, and there are precisely q + 1 lines through p, each of the
q remaining lines through p must intersect the conic in additional points. (See Figure
1.) A line through p is described by a linear equation, and the conic by a quadratic
equation: substituting one into the other gives a polynomial in one variable of degree
at most 2. One root corresponds to p, and so there is precisely one additional point of
intersection. �

Figure 1. A conic F , with tangent T at the point p along with a pencil
of lines at p and their intersection points.

Again, Proposition 1.4 is best illustrated with an example. Before this example we
remark on a technique that will be used repeatedly.

Remark 1.5. The determinant of a 3×3 matrix having as rows representatives of three
projective points vanishes if and only the projective points are collinear. Equivalently,
three points in a three dimensional vector space have vanishing determinant if and only
if they are coplanar.

Example 1.6. Consider again the conic F (x, y, z) = x2 − yz over a field with at least
3 elements. Previously, we computed the tangent at [1 : 1 : 1]. Let us now construct
additional points on the curve.

Any line through p can be written parametrically as [1 + αt : 1 + βt : 1 + γt]. The
lines corresponding to (α, β, γ) and (α′, β′, γ′) are distinct if and only if the matrix





1 1 1
α β γ
α′ β′ γ′





is invertible. Let us compute the second point at which the line [1 + t : 1 + t : 1] meets
the curve:

(1 + t)2 − (1 + t) = 0 i.e. t2 + t = 0 .

The solution t = 0 corresponds to p, while the solution t = −1 corresponds to the
point [0 : 0 : 1] on F . In this way, every point on F can be constructed by computing
solutions of simple systems of equations.
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The reader is encouraged at this point to verify that the tangent to the conic of
Example 1.6 at q = [0 : 0 : 1] is the line {[1 : 0 : t] : t ∈ k} ∪ {[0 : 0 : 1]}. Furthermore,
the line x = αy contains q for any non-zero α, and the second point of intersection of
[t : αt : 1] with the variety is given by

t2 − αt = 0

which occurs when t = α. Hence, the points on the curve admit the parametrisation
[α : α2 : 1] together with a point ‘at infinity’ with respect to this parameterisation,
which is [0 : 1 : 0].

In contrast to the definition of a conic, the next definition is purely combinatorial.

Definition 1.7. An oval in a projective plane is a subset of the points of the plane
meeting no line in more than 2 points.

Proposition 1.8. An oval in a projective plane of order q contains at most q+2 points
if q is even and q + 1 points if q is odd.

Proof. Denote the oval by O, let p ∈ O and r /∈ O. Each line through p can intersect
the oval in at most one additional point, hence there at most q + 2 points on the oval.
If there are q + 2 points in O then every line intersecting the oval must do so in two
points, there can be no tangents to O.

Suppose now that O contains q + 2 points, and consider the lines through r which
intersect O. Since each contains precisely two points, the quantity q + 2, and hence q,
must be even. Consequently, when q is odd, an oval contains at most q + 1 points. �

Following immediately from Propositions 1.4 and 1.8, we have many examples of
maximal ovals in projective planes of odd order.

Corollary 1.9. A conic in a projective plane of odd order is a maximal oval.

Our goal in this paper is to prove Segre’s theorem, which is the converse of this
corollary: every maximal oval in a finite projective plane of odd order is actually a
conic. The reader may be tempted to think that this converse would be natural to
believe, however many prominent researchers in the area did not think that it was true.
It was first conjectured by Järnefelt and Kustaanheimo but Marshall Hall said in his
review that he found it implausible, [10]. Later Hall reviewed Segre’s paper saying that
the method of proof was ingenious.

Segre’s result is the best possible in the sense that there exist maximal ovals with
q + 2 points in finite planes of even order, not all of which can be constructed from
conics. The study of such maximal ovals in planes of even order was a key step in the
proof of the non-existence of the projective plane of order 10, [11]. The problem over
infinite fields does not appear amenable to classification.

2. The Desargues configuration

Historically, Desargues constructed and worked with projective planes constructed
from three dimensional vector spaces. Desargues’ theorem is a statement about the
collinearity of points lying in a particular configuration. Much later, it was realised
that combinatorial objects satisfying the axioms of a projective plane exist. It turns
out that the conclusion of Desargues’ theorem typically does not hold in these exotic
planes, and in fact, the validity of Desargues’ theorem is a necessary and sufficient
condition for co-ordinatisation of a plane by a field. Thus different authors can refer to
quite different statements when they write Desargues’ theorem. We refer the reader to
an elementary and historically motivated account of this topic by Blumenthal [3]. In
this section, we present the result as it would have been understood by Desargues: that
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is, in a plane co-ordinatised by a field. Our proof is via linear algebra, and we spend
some time illustrating its application, since it will be required in Segre’s theorem.

Definition 2.1. A triangle is a collection of three non-collinear points in a projective
plane. Let P = {p1, p2, p3} and S = {s1, s2, s3} be two triangles in a projective plane. If
the lines |p1s1| and |p2s2| and |p3s3| intersect in a point, then P and S are in perspective
from a point. This point is called the center of perspectivity.

Figure 2. The triangles p1p2p3 and s1s2s3 are in perspective. The
point P is the centre of perspectivity and L the line of perspectivity.
The points xij show the construction of the line L. One interpretation
of Desargues’ theorem is that x23 is necessarily on the line spanned by
x12 and x13.

Desargues’ theorem states, that in a Desarguesian projective plane, two triangles
in perspective from a point must satisfy an additional condition. Geometrically, the
intersection points of congruent sides of the triangle must be collinear. Algebraically,
this is expressed as the vanishing of a certain determinant. The following proof is the
ninth provided by Tan in an article surveying proof techniques for this result, [14].

Theorem 2.2 (Desargues’ theorem). Let P = {p1, p2, p3} and S = {s1, s2, s3} be
triangles in perspective in a projective plane. Denote by xij the intersection of the
congruent sides |pipj | and |sisj | of the two triangles.

Then the points x12, x13 and x23 are collinear.

Proof. By hypothesis, the triangles P and S are in perspective from a point, which we
may choose without loss of generality3 as c = [1 : 1 : 1]. Again without loss of generality,
we may label the points of one triangle as p1 = [1 : 0 : 0], and p2 = [0 : 1 : 0] and
p3 = [0 : 0 : 1].

By hypothesis, the point si is on the line through pi and c, so s1 = [1 + t1 : 1 : 1]
and s2 = [1 : 1 + t2 : 1], and s3 = [1 : 1 : 1 + t3]. The intersection of two lines is most
conveniently computed as the simultaneous solution of their linear equations. To find

3We will not justify this claim fully, but remark that this is the projective version of the claim that
since all bases of a vector space are equivalent, we lose no generality by working with the standard
normal basis.
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the line through s1 and s2, it suffices to compute conditions under which the unknowns
x1, x2, x3 render the following matrix rank deficient:





x1 x2 x3
1 + t1 1 1

1 1 + t2 1



 .

The necessary and sufficient condition, given by the vanishing of the determinant, is
t2x1+ t1x2− (t1t2+ t1+ t2)x3 = 0. The line through p1 and p2 is given by the equation
x3 = 0, and the intersection of these lines is the projective point x12 = [t1 : −t2 : 0].
Similar computations yield x13 = [−t1 : 0 : t3] and x23 = [0 : t2 : −t3]. These points
are collinear if and only if the corresponding matrix, in which points are written as
columns,





t1 0 −t1
−t2 t2 0
0 −t3 t3





is rank deficient. But it is easily seen that the column-vector (1, 1, 1) is in the nullspace,
which completes the proof. �

We illustrate this theorem with an example, which will be required in the proof
Segre’s theorem.

Example 2.3. Suppose that p1 = [1 : 0 : 0] and p2 = [0 : 1 : 0] and p3 = [0 : 0 : 1]. The
lines of the triangle are then ℓ12 = [1 : t : 0] with equation x3 = 0 as well as ℓ13 and ℓ23
with equations x2 = 0 and x1 = 0 respectively.

Take P1 = [−1 : 1 : 1] and P2 = [1 : −1 : 1] and P3 = [1 : 1 : −1], which is in
perspective with the first triangle through the center of perspectivity [1 : 1 : 1]. Its lines
are L12 = [−1 + t : 1− t : 1 + t] = [1 : −1 : t] with equation x1 + x2 = 0. Similarly L13

has equation x1 + x3 = 0 and L23 has equation x2 + x3 = 0.
The intersection of ℓ1 with L1 is the point [1 : −1 : 0], the intersection of ℓ2 with L2

is [0 : 1 : −1] and the intersection of ℓ3 with L3 is [−1 : 0 : 1]. Writing these vectors as
columns, we perceive that the matrix





1 0 −1
−1 1 0
0 −1 1





is rank-deficient, which means that all three points are contained on a projective line,
with equation x+ y + z = 0.

3. The main theorem

With the necessary background in hand, we proceed to the proof of Segre’s theorem.
The key step is the famous Lemma of the Tangents, which proves that a particular pair
of triangles constructed from a conic is in perspective. The main result then applies
Desargues’ theorem to deduce an algebraic relation between the points on an oval from
this configuration. Our proof of Lemma 3.1 is essentially Segre’s, while our proof of
Theorem 3.2 departs from the original in some details while preserving the essential
argument. (Segre achieved his proof without mention of Desargues, though he used
the result heavily. He also required a combinatorial result of Qvist on intersections of
tangents of an oval which we avoid.)

Lemma 3.1. Let p1, p2, p3 be three distinct points on an oval in PG2(Fq) where q is
an odd prime power. Define si to be the intersection point of the tangents to the oval
at pi+1 and pi+2, with subscripts interpreted modulo 3. The triangles P = {p1, p2, p3}
and S = {s1, s2, s3} are in perspective.
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Proof. Without loss of generality, we may choose a co-ordinate system for the projective
plane so that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] .

Observe that the q+1 lines through p1 consist of the q lines L1(α) described by equations
of the form x2 = αx3 where α ∈ Fq, and the line L1(∞) with equation x3 = 0. The line
L1(∞) passes through p2 and the line L1(0) passes through p3. Of the remaining q− 1,
precisely one is tangent to the oval, which we denote L1(k1).

Define the lines L2(α) and L3(α) analogously as the lines passing through the points
p2 and p3 satisfying equations of the form x3 = αx1 and x1 = αx2 respectively. Simi-
larly, write L2(k2) and L3(k3) for the tangents at p2 and p3. The tangents L1(k1) and
L2(k2) are given by the equations x2 = k1x3 and x3 = k2x1, and so intersect at the
point s3 = [1 : k1k2 : k2]. Similarly, s1 = [k3 : 1 : k3k2] and s2 = [k1k3 : k1 : 1].

To show the triangles P = {p1, p2, p3} and S = {s1, s2, s3} are in perspective, we must
show that the three lines |p1s1| = L1(k2k3), and |p2s2| = L2(k1k3) and |p3s3| = L3(k1k2)
meet in a single point. The equations of these lines are respectively

x2 = k2k3x3, x3 = k1k3x1, x1 = k1k2x2 . (1)

We require a relation between the ki to show that these equations have a common
solution. Let c = [c1 : c2 : c3] be a point on the oval distinct from p1, p2, p3. The entry
ci must be non-zero, otherwise a line Lj(0) with j 6= i would intersect the oval in three
points. Denote by Li(λi) the line passing through c for i = 1, 2, 3. Since c2 = λ1c3, it
follows that λ1 = c2c

−1
3 . Similarly, λ2 = c3c

−1
1 and λ3 = c1c

−1
2 . We conclude that

λ1λ2λ3 = c2c
−1
3 c3c

−1
1 c1c

−1
2 = 1 .

Denote the remaining q− 2 points on the oval distinct from p1, p2, p3 by c1, . . . , cq−2.
Each line meets the oval in at most two points, so the line through pi and cj is distinct
from the line through pi and ck for j 6= k. Denote by λi,k the unique α ∈ Fq such that
Li(α) meets qk. By the above argument, the identity λ1,iλ2,iλ3,i = 1 holds for each
i ∈ {1, . . . , q − 2}.

The product of the non-zero elements in the field is −1 because the multiplicative
group is cyclic and so contains a unique element of order 2 which does not cancel with
its inverse in the product. Combining these observations, and using commutativity of
multiplication,

q−2
∏

i=1

λ1,iλ2,iλ3,i =





∏

x 6=k1

x









∏

x 6=k2

x









∏

x 6=k3

x



 =





∏

x∈F∗

q

x





3

(k1k2k3)
−1 = 1 .

Since
(

∏

x∈F∗

q

x
)3

= −1 we conclude that a non-trivial relationship holds between the

three tangents:

k1k2k3 = −1 . (2)

Returning at last to the claim: the point [1 : −k3 : k1k3] satisfies the conditions of
Equation (1) due to Segre’s identity, Equation (2). �

Finally, we show the result which is the aim of this paper, namely Segre’s theorem
which states that a maximal oval in a projective plane of odd order is in fact a conic.

Theorem 3.2. The points of a maximal oval in a finite projective plane of odd char-
acteristic satisfy a polynomial equation of degree 2.

Proof. As in Lemma 3.1, we choose a triangle P = {p1, p2, p3} on the oval, and up
to projective equivalence we may choose k1 = k2 = k3 = −1. With reference to the
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notation in Lemma 3.1, we have have the points, pi and the tangent lines Li(ki):

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]

x2 = −x3, x3 = −x1, x1 = −x2,

Let c = [c1 : c2 : c3] be a point on the oval distinct from the pi. Let b1x1+b2x2+b3x3 = 0
be the unique tangent to the oval at c. As in Lemma 3.1 the co-ordinates ci are
all non-zero, and if bi were zero then pi would satisfy the equation of the tangent, a
contradiction.

Now, consider the triangle {c, p2, p3}, which by Lemma 3.1 is in perspective to the
triangle given by the three tangents

b1x1 + b2x2 + b3x3 = 0, x3 = −x1, x1 = −x2 .

By Desargues’ Theorem, these triangles are in perspective from a line: we will compute
the edges of {c, p2, p3} and intersect them with the appropriate tangents to derive a
relation between the bi and ci. First, we intersect the line |cp2| with the tangent to the
oval at p3. The points of the line |cp2| are of the form c+ tp2 = [c1 : c2 + t : c3], while
the equation of the tangent at p3 is given by x1 = −x2. Thus the unique solution is
[c1 : −c1 : c3]. Similarly, |cp3| intersects the tangent at p2 in the point [c1 : c2 : −c1]
and the tangent through c intersects |p2p3| at the point [0 : b3 : −b2].

These three points are collinear, so the determinant of the matrix




0 b3 −b2
c1 −c1 c3
c1 c2 −c1





must vanish. Using that c1 is non-zero, this is equivalent to the identity

b3(c1 + c3) = b2(c1 + c2) .

An analogous computation with the triangles {c, p1, p2} and {c, p1, p3} and the triangles
formed from their tangents gives two further identities:

b3(c2 + c3) = b1(c1 + c2), b1(c1 + c3) = b2(c2 + c3) .

Since [c1 : c2 : c3] lies on the line b1x1 + b2x2 + b3x3, the following identity holds:

(c1 + c2) (b1c1 + b2c2 + b3c3) = 0 .

Multiplying out and substituting the identities obtained from Desargues:

b1(c1 + c2)c1 + b2(c1 + c2)c2 + b3(c1 + c2)c3

= b3(c2 + c3)c1 + b3(c1 + c3)c2 + b3(c1 + c2)c3

= b3 ((c2 + c3)c1 + (c1 + c3)c2 + (c1 + c2)c3)

= 2b3 (c1c2 + c2c3 + c3c1) .

Since b3 6= 0 and the characteristic is odd, c1c2 + c2c3 + c3c1 = 0 holds for the point
[c1 : c2 : c3] of the oval. But the point c was an arbitrary point of the oval distinct from
the pi and the equation holds for the points pi. We have shown that the q+1 points of
the oval lie on the conic x1x2 + x2x3 + x3x1. This completes the proof. �

Remark 3.3. The reader may be perturbed by the explicit conic constructed in The-
orem 3.2. In fact, all conics in PG2(Fq) are projectively equivalent (in essentially the
same way that all bases of a vector space are equivalent up to choice of basis), and this
conic was forced by our choice of basis at the start of the proof.
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