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From CT scans to 4-manifold topology via neutral geometry

BRENDAN GUILFOYLE

ABSTRACT. In this survey paper the ultrahyperbolic equation in dimension four is dis-
cussed from a geometric, analytic and topological point of view. The geometry centres
on the canonical neutral metric on the space of oriented geodesics of 3-dimensional
space-forms, the analysis discusses a mean value theorem for solutions of the equation
and presents a new solution of the Cauchy problem over a certain family of null hyper-
surfaces, while the topology relates to generalizations of codimension two foliations
of 4-manifolds.

The air is full of an infinity of straight lines and rays

which cut across each other without displacing each other and
which reproduce on whatever they encounter

the true form of their cause.

Leonardo da Vinci
MS. A. 2v, 1490

1. INTRODUCTION

Our starting point is, as the title suggests, the acquisition of density profiles of
biological systems using the loss of intensity experienced by a ray traversing the system.
Basic mathematical physics arguments imply that this loss is modelled by the integral
of the density function along the ray. One goal of Computerized Tomography is to
invert the X-ray transform: reconstruct a real-valued function on R3 from its integrals
over families of lines.

The reconstruction of a function on the plane from its value on all lines, or more
generally, a function on Euclidean space from its value on all hyperplanes, dates back at
least to Johann Radon [62]. One could argue that Allan MacLeod Cormack’s 1979 Nobel
prize for the theoretical results behind CAT scans [11] is the closest that mathematics
has come to winning a Nobel prize, albeit in Medicine. The choice of axial rays reduces
the inversion of the X-ray transform to that of the Radon transform over planes in R3
[43].

The basic problems of tomography - acquisition and reconstruction - arise far more
widely than just medical diagnostics, finding application in industry [74], geology [70],
archaeology [58] and transport security [56]. Indeed, advances in CT technology, trialed
in Shannon Airport recently, could warrant the removal of the 100ml liquid rule for
airplane travellers globally [63].

Rather surprisingly, sitting behind the X-ray transform and its many applications
is a largely unstudied second order differential equation: the ultrahyperbolic equation.
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For a function u of four variables (X1, X2, X3, X4) the equation is
0%u n Pu  Pu O%u B
0X?  0X2 0XZ2 0X?

The reasons for the relative paucity of mathematical research on the equation despite

the link to tomography will be discussed below.

The purpose of this mainly expository paper is to describe recent research on the
ultrahyperbolic equation, its geometric context and its applications. It turns out that
the ultrahyperbolic equation is best viewed in terms of a conformal class of neutral
metrics and that in this context it advances new paradigms that can contribute to

the understanding of four dimensional topology. We now discuss the mathematical
background of this undertaking before giving a more detailed summary of the paper.

0. (1)

1.1. Background. The X-ray transform of a real valued function on R3 is defined by
taking its integral over (affine) lines of R3. That is, given a real function f : R3 — R
and a line v in R?, let

up(y) = /jdr,

where dr is the unit line element induced on 7 by the Euclidean metric on R3.

Thus we can view the X-ray transform of a function f (with appropriate behaviour
at infinity) as a map us : L(R®) — R : v — uy(7), where L(R3), or L for short, is the
space of oriented lines in R3. Here we pick an orientation on the line to simplify later
local constructions, much as Leonardo does when invoking rays as distinct from lines,
and note that the space IL double covers the space of lines.

In comparison, the Radon transform takes a real-valued function on R? and integrates
it over planes in R3. By elementary considerations, the space of affine planes in R? is
three dimensional, equal to the dimension of the underlying space, while the space of
oriented lines is four dimensional.

Thus, by dimension count, if we consider the problem of inverting the two transforms,
given a function on planes one can reconstruct the original function on R3, while the
problem is over-determined for functions on lines. The consistency condition for a
function on line space to come from an integral of a function on R3 is exactly the
ultrahyperbolic equation [46].

Viewed simply as a partial differential equation, equation (1) is neither elliptic nor
hyperbolic, and so many standard techniques of partial differential equation do not
apply. Indeed, in early editions of their influential classic Methods of Mathematical
Physics, Richard Courant and David Hilbert showed that the ultrahyperbolic equation
in R?2 has an ill-posed Cauchy boundary value problem when the boundary has Lorentz
signature, thus relegating the equation as unphysical in a mechanical sense.

It was Fritz John who in 1937 proved that, to the contrary, the ultrahyperbolic
equation can have a well-posed characteristic boundary value problem if the boundary
3-manifold is assumed to be null, rather than Lorentz [46]. Later editions of Courant
and Hilbert’s book acknowledge John’s contribution and his discovery of the link to line
space, but study of the ultrahyperbolic equation never took off in the way that it did
for elliptic and hyperbolic equations.

On the other hand, by reducing the X-ray transform to the Radon transform for
certain null configurations of lines, Cormack side-stepped the ultrahyperbolic equation
altogether. Moreover, for applied mathematicians, the equation, or its associated John’s
equations, arises mainly as a compatibility condition if more than a 3-manifold’s worth
of data is acquired. Its possible utility from that perspective therefore is to check such
excess data, rather than to help reconstruct the function.
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Our first goal, contained in Section 2 is the geometrization of the ultrahyperbolic
equation. In particular, we view it as the Laplace equation of the canonical metric
G of signature (+ + ——) on the space L of oriented lines in R3 [36]. The fact that
G is conformally flat and has zero scalar curvature means that a conformal multiple
of a harmonic function satisfies the flat ultrahyperbolic equation (1). Fritz John did
not explicitly use the neutral metric, but at the cost of the introduction of unmotivated
multiplicative factors in calculations, factors that can now be related with the conformal
factor of the metric.

The introduction of the neutral metric not only clarifies the ultrahyperbolic equation,
but it highlights the role of the conformal group in tomography. Properties such as
conformal flatness of a metric, zero distance between points or nullity of a hypersurface
are properties of the conformal class of a metric. Moreover, mathematical results can
be extended by applying conformal maps [9].

Section 2 describes how these neutral conformal structures arise in the space of ori-
ented geodesics of any 3-dimensional space-form, namely R3, S3 and H3. The common-
ality between these three spaces allows one to apply many of the results (mean value
theorem, doubly ruled surfaces, null boundary problems) to non-flat spaces. Surpris-
ingly, electrical impedance tomography calls for negative curvature and so tomography
in hyperbolic 3-space is not quite as fanciful as it may at first seem - see [4]. The link
between the ultrahyperbolic equation and the neutral metric on the space of oriented
geodesics in H? as given in Theorem 8 is new and so the full proof is given below.

In Section 3 conformal methods are used to extend both a classical mean value
theorem and its interpretation in terms of doubly ruled surfaces in R3. Aside from the
discussion of the conformal extension of the mean value theorem, the section contains a
new geometric formula for a solution of the ultrahyperbolic equation given only values
on the null hypersurface formed by lines parallel to a fixed plane. In fact, this example
was considered by John, but the geometric version we present using the null cone of the
neutral metric has not appeared elsewhere.

The final Section turns to global aspects of complex points on Lagrangian surfaces in
LL and an associated boundary value problem for the Cauchy-Riemann operator. This
proof of the Carathéodory Conjecture using the canonical neutral metric on the space
of oriented lines [35] is under review, but significant parts of the arguments have now
appeared in print. In particular, the essence as to why the Conjecture is true - namely
the size of the Euclidean group - has been established [30] and shown to be sharp [26].

The efficacy of second order methods of parabolic partial differentiation in higher
codimension has also been proven in this context for both interior [32] and boundary
problems [28]. The final argument hinges on the technical point as to whether a hyper-
bolic angle condition in codimension two in dimension four can be made sticky enough
to confine the boundary of a line congruence evolving under mean curvature flow. This
is the sole remaining part of the proof under review.

Having established the why, this approach to the Carathédory Conjecture also lends
itself to other independent methods of completion - one needs only to establish the
existence of enough holomorphic discs attached to a given Lagrangian surface and the
Conjecture follows. Indeed, a local index bound [34] and a conjecture of Toponogov [31]
would also follow from existence of such families. This could be proven, for example, by
the use of the method of continuity and pseudo-holomorphic curves [25], which would
be a first order rather than second order proof. In any event, the acceptance that this
infamous Conjecture has been finally put to rest will probably only come about when
it has been proven at least twice.

A positive outcome of these developments has been the first application of differential
geometry in the theory of complex polynomial: the index bound for an isolated umbilic
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point on a real analytic surface has been shown to restrict the number of zeros inside the
unit circle for a polynomial with self-inversive second derivative [29]. This and related
issues are discussed in more detail in Section 4.

The reason codimension two has a special significance in four dimensional topology
is briefly discussed and the final section considers topological obstructions to neutral
metrics as applied to closed 4-manifolds. In the case where the 4-manifold is compact
with boundary, many open questions remain about what geometric information from a
neutral metric can be seen at the boundary. Whether for a neutral 4-manifold with null
boundary, coming full circle, it is possible to X-ray the inside and explore its topology.

2. THE GEOMETRY OF NEUTRAL METRICS

This section discusses the geometry of metrics of indefinite signature (++——). While
the study of positive definite metrics and Lorentz metrics are very well-developed, the
neutral signature case is less well understood, even in dimension four. Rather than
the general theory, of which [13] is a good survey, the section will focus on spaces of
geodesics and the invariant neutral structures associated with them.

2.1. The Space of Oriented Lines. The space LL of oriented lines (or rays) of Eu-
clidean R3 can be identified with the set of tangent vectors of S? by noting that

L={U,VeR®| |U=1and U-V=0}=TS? (2)

where U is the direction vector of the line and V the perpendicular distance vector
to the origin.

Topologically, IL is a non-compact simply connected 4-manifold which can be viewed
as the two dimensional vector bundle over S? with Euler number two. One can see
the Euler number by taking the zero section, which is the 2-sphere of oriented lines
through the origin and perturbing it to another sphere of oriented lines (the oriented
lines through a nearby point, for example). The two spheres are easily seen to intersect
in two oriented lines, hence the Euler number of the bundle is two.

This space comes with a natural projection map 7 : L. — S? which takes an oriented
line to its unit direction vector U. In fact, there is a wealth of canonical geometric
structures on L, where canonical means invariant under the Euclidean group. These
include a neutral Kéhler structure, a fibre metric and an almost paracomplex structure.
All three have a role to play in what follows and so we take some time to describe them
in detail.

To start with the Kéahler metric on L, one has

Theorem 1. [36] The space L of oriented lines of R® admits a metric G that is invariant
under the Euclidean group acting on lines. The metric is of neutral signature (++——),
is conformally flat and scalar flat, but not Einstein.

It can be supplemented by a complex structure Jo and symplectic structure w, so that
(L, G, Jo,w) is a neutral Kahler 4-manifold.

Here the complex structure Jy is defined at a point «v € L by rotation through 90°
about the oriented line . This structure was considered in a modern context first by
Nigel Hitchin [42], who dated it back at least to Karl Weierstrass in 1866 [73].

The symplectic structure w is by definition a non-degenerate closed 2-form on L. =
TS?, and it can be obtained by pulling back the canonical symplectic structure on the
cotangent bundle T*S? by the round metric on S?.

These two structures are invariant under Euclidean motions acting on line space
and fit nicely together in the sense that w(J-,J-) = w(-,:). The metric obtained by
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their composition G(-,-) = w(J-,-), is of neutral signature (+ + ——), however. The
existence of a Euclidean invariant metric of this signature on line space was first noted
by Eduard Study in 1891 [68], but its neutral Kéhler nature wasn’t discovered until
2005 [36]. Interestingly, the space of oriented lines in Euclidean R™ admits an invariant
metric iff n = 3, and in this dimension it is pretty much unique [64]. This accident of
low dimensions offers an alternative geometric framework to investigate the semi-direct
nature of the Euclidean group in dimension three, one which expresses three dimensional
Euclidean quantities in terms of neutral geometric quantities in four dimensions.

This is but one of the many accidents that arise in the classification of invari-
ant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and
(para)Kahler structures on the space of oriented geodesics of a simply connected pseudo-
Riemannian space of constant curvature or a rank one Riemannian symmetric space [1].

Returning to oriented line space, the neutral metric G at a point v € L can be
interpreted as the angular velocity of any line near «. If the angular velocity is zero -
and hence the oriented lines are null-separated - then the lines either intersect or are
parallel. One can adopt the projective view, which arises quite naturally, that parallel
lines intersect at infinity, and then nullity of a curve with respect to the neutral metric
implies the intersection of the underlying infinitesimal lines in R3. Nullity for higher
dimensional submanifolds will be discussed in the next section.

The invariant neutral metric is not flat, although its scalar curvature is zero and its
conformal curvature vanishes. The non-zero Ricci tensor has zero neutral length, but its
interpretation in terms of a recognisable energy momentum tensor is lacking. Given the
difference of signature to Lorentz spacetime, it is also difficult to see the usual physical
connection as in general relativity.

Since the metric is conformally flat, there exist local coordinates (X1, Xo, X3, X4)
and a strictly positive function €2 so that it can be written as

ds® = Q*(dX? + dX3 — dX2 — dX3). (3)

Such a metric has zero scalar curvature iff ) satisfies the ultrahyperbolic equation,
thus characterising a Yamabe-type problem for neutral metrics [50]. Such coordinates
(X1, X2, X3, Xy) were first constructed using the Pliicker embedding on the space of
lines by John [46], who showed that the compatibility condition for a function on line
space to be the integral of a function on R? is exactly the flat ultrahyperbolic equation
in these coordinates.

Write R?? for R* endowed with the flat neutral metric. In Section 3 the ultrahyper-
bolic equation will be considered in more detail and an explicit formula presented for
data prescribed on a certain null hypersurface.

A peculiarity of neutral signature metrics in dimension four is the existence of 2-
planes on which the induced metric is identically zero, so-called totally null 2-planes.
In R%?2 there are a disjoint union of two S'’s worth of totally null 2-planes, termed
a—planes and S—planes.

One way to see these is to consider the null cone Cy at the origin. This is a cone over
the 2-torus S! x S! given by

X2+ X2-X2-X2=0.

An a—plane is a cone over a diagonal in the torus ¢ — (X1 + iX2, X3 + iXy) =
(e, eit+10)) while a S—plane is a cone over an anti-diagonal in the torus t — (X; +
iX9, X3 +iXy) = (e, e~ i(tH0)),

This null structure exists in the tangent space at a point in any neutral four manifold
and if one can piece it together in a geometric way there can be global topological
consequences. One natural question is whether the a—planes or S—plane fields are
integrable in the sense of Frobenius, thus having surfaces to which the plane fields are
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tangent. These are guaranteed for the invariant neutral metrics endowed on the space
of oriented geodesics of any 3-dimensional space-form, as they are all conformally flat
[15].

Roughly speaking, an a—surface in a geodesic space is the set of oriented geodesics
through a fixed point, while f—surfaces are the oriented geodesics contained in a fixed
totally geodesic surface in the ambient 3-manifold. Thus a neutral metric on a geodesic
space allows for the geometrization of both intersection and containment.

Restricting our attention to R?, the a—planes in L are the oriented lines through
a point or the oriented lines with the same fixed direction. The latter are the 2-
dimensional fibres of the canonical projection 7 : L. — S? taking an oriented line to its
direction.

The distance between parallel lines in R? induces a fibre metric on 7—!(p) for p €
S2. If ¢ is a complex coordinates about the North pole of S? given by stereographic
projection and 7 the complex fibre coordinate in the projection TS? — S2, then the

fibre metric has the form Adr dF
2= (4)
(14 £€)2

In Section 3.3 this arises in the X-ray transform from certain null data.

Note that the complex coordinates (£,7) on L are essentially the vectors U and V in
definition (2), the direction and perpendicular distance to the origin. They are related
to John’s conformal flat coordinates (X7, X2, X3, X4) by

Proposition 2. [8] For complex coordinates (£,m) on TS?, over the upper hemisphere
|€]2 < 1 the conformal coordinates (X1, Xa, X3, X4) are

X, +iXy = (n+ &% —i(1 + ££)¢)

2

We turn now to null 3-manifolds (or hypersurfaces) in a neutral 4-manifold. An
example of such is the null cone of a point in L. Fix any oriented line vy € IL and define
its null cone to be

Co(0) = {7 €L | Q(v,7) =0},
where @ is the neutral distance function introduced by John [46]. For convenience intro-
duce the complex conformal coordinates given in terms of the real conformal coordinates
of equation (3) by

71 =X1 41X Zo = X3+ 1X4.

If two oriented lines 7, 4 have complex conformal coordinates (Z1, Z3) and (Z1, Z3) then
the neutral distance function is

QU.A) =121 = 211 ~ |2 - Zo.
Two oriented lines have zero neutral distance iff either they are parallel or they intersect.
The null cone arises in the formula for the ultrahyperbolic equation in Theorem 13.

More generally, null hypersurfaces in I can be understood as 3-parameter families
of oriented lines in R? as follows. The degenerate hyperbolic metric induced on a null
hypersurface H at a point v defines a pair of totally null planes intersecting on the null
normal of the hypersurface in 7,7, one an a—plane, one a S—plane. These plane fields
can be integrable or contact, as explored in [20].

There is a unique a—surface in L containing + with tangent plane agreeing with
the a—plane at «. Such a holomorphic Lagrangian surface is either the oriented lines
through a point, or the oriented lines in a fixed direction. This is the neutral metric
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interpretation of the classical surface statement that a totally umbilic surface is either
a sphere or a plane.

Thus, the a—plane at v € L identifies a point on each v C R? (albeit at infinity)
which is the centre of the associated a—surface. The locus of all these centres in R? as
one varies over H will be called the focal set of the null hypersurface. A null hypersurface
is said to be regular if the focal set is a submanifold of R3.

Proposition 3. A regular null hypersurface H,, with focal set of dimension n must be
one of the following:

Ho: The set of oriented lines parallel to a fixed plane,
Hi: The set of oriented lines through a fived curve,
Ho: The set of oriented lines tangent to a fixed surface.

Assuming the fixed curve and fixed surface are convex, we have Ho = Ha = S! x R?
and Hy = S? x R. The null cone of a point v € L is clearly an example of null
hypersurface 1, the fixed curve being the line v C R3.

On the other hand, the formula presented in Section 3.3 assumes data on a null
hypersurface Hg. Both the a— and S—planes in Hg are integrable, so it can be foliated
by a—surfaces (all the oriented lines in a fixed direction) and by S—surfaces (all oriented
lines contained in a plane parallel to the fixed plane).

The a-foliation underpins the projection operator in the formula and it is not clear
how the formula would look for data on null hypersurfaces of type Hi or Hso, as the
a—planes are not in general integrable.

Lines through a curve
Lines parallel to a plane Lines tangent to a surface

Figure 1. Regular null hypersurfaces in oriented line space

In Figure 1 the three types of regular null hypersurfaces Ho, 1, Ho are shown. The
left null hypersurface is Hg, the standard configuration for acquiring data in CT scans,
and is discussed in Section 3.3.

Reconstruction using either of the other two null hypersurfaces would have advantages
if one seeks to reduce the amount of radiation exposure during the scan. In particular,
using the oriented lines H; through a fixed line would reduce the exposure of each
point to a semi-circle of radiation rather than the full circle in the Hy. On the other
hand, using the oriented lines Ho tangent to a convex surface would leave the interior
occluded, and hence shielded completely from radiation. Whether either of these two
configurations can be practically acquired by a physical scanner is another matter.

2.2. Paracomplex Structures. The complex structure Jy on the space of oriented
geodesics of a 3-dimensional space form evaluated at an oriented geodesic is obtained
by rotation through 90° about the geodesic. This almost complex structure is integrable
in the sense of Nijinhuis, which for any almost complex structure J says

k _ 1m k m k k m my __
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and thus a complex structure. This is due to the fact that the ambient space has
constant curvature [42].

One can also take reflection of an oriented line in a fixed oriented line v € L to gener-
ate a map Jy : T,IL — T, IL such that J12 = 1 and the £1—eigenspaces are 2-dimensional.
This almost paracomplex structure is not integrable in the sense of Nijinhuis and thus
not a paracomplex structure. It is however anti-isometric with respect to the canonical
neutral metric G:

G(J1-, J1-) = =G(-, ).

Theorem 4. [19] The space of oriented lines of Euclidean 3-space admits an invariant
commuting triple (Jo, J1, J2) of a complex structure, an almost paracomplex structure
and an almost complex structure, respectively, satisfying Jo = JoJ1. The complex struc-
ture Jy is isometric, while Ju and Jo are anti-isometric. Only Jy is parallel w.r.t. G,
and only Jo is integrable.

Composing the neutral metric G with the (para)complex structures Jy, J1, Jo yields
closed 2-forms Qo and Q1, and a conformally flat, scalar flat, neutral metric G, respec-
tively. The neutral 4-manifolds (L,G) and (L,G) are isometric. Only Jy is parallel
w.r.t. G.

An almost paracomplex structure is an example of an almost product structure, in
which a splitting of the tangent space at each point of the manifold is given, in this
case 4 = 2 4+ 2. Such pointwise splittings can only be extended over a manifold subject
to certain geometric and topological conditions. For example

Theorem 5. [19] A conformally flat neutral metric on a 4-manifold that admits a par-
allel anti-isometric or isometric almost paracomplex structure has zero scalar curvature.

The parallel condition for an isometric almost paracomplex structure can be expressed
in terms of the first order invariants of the eigenplane distributions:

Theorem 6. [19] Let j be an isometric almost paracomplex structure on a pseudo-
Riemannian 4-manifold. Then j is parallel iff the eigenplane distributions are tangent
to a pair of mutually orthogonal foliations by totally geodesic surfaces.

Canonical examples for neutral conformally flat metrics are the indefinite product of
two surfaces of equal constant Gauss curvature, which have exactly this double foliation.
It is instructive in this case to use the isometric paracomplex structure j = I & —1I to
flip the sign of the product metric. The result is a Riemannian metric which turns out
to be Einstein. This construction holds more generally:

Theorem 7. [19] Let (M, g) be a Riemannian 4-manifold endowed with a parallel iso-
metric paracomplex structure j, and let the associated neutral metric be g'(-,-) = g(j-,-).
Then, ¢’ is locally conformally flat if and only if g is Einstein.

This transformation will be used in Section 4.3 to find global topological obstructions
to parallel isometric paracomplex structures.

2.3. The Space of Oriented Geodesics of Hyperbolic 3-Space. In this section
we consider the space LL(H?) of oriented geodesics in three dimensional hyperbolic space
H? of constant sectional curvature —1. The canonical neutral metric on this space has
been considered in detail [22] [23] [65], but its relation to the ultrahyperbolic equation
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has not. To illustrate the ideas of this paper, and explore the commonality with the
flat case, proofs are provided in this section.

The space L(H?) of oriented geodesics in hyperbolic 3-space is diffeomorphic to that
of oriented lines L(R3) in Euclidean 3-space L(H?®) = L(R3) = T'S?, but the projection
map does not have the same geometric significance. In fact each oriented geodesic has
two Gauss maps (the beginning and end directions at the boundary of the ball model
for H?) and there is a natural embedding into S x S2. Thus it is natural to view L(H?)
as S? x S? with the diagonal removed or, more geometrically, the reflected diagonal
removed [23].

The canonical neutral metric G on L(H?®) is conformally flat and scalar flat, thus
relating the solutions of the flat ultrahyperbolic equation with harmonic functions, as
in the case of L(R3).

Theorem 8. For any compactly supported or asymptotically constant function f on
hyperbolic 3-space, its X-ray transform is harmonic with respect to the canonical neutral
metric:

A@’uf = 0,
where Ag is the Laplacian of G.

Proof. Consider the upper half-space model of hyperbolic 3-space H?, that is (z1, 22, 73) €
R3, z3 € Ry with metric
 daf + dad + daj

2
T3

ds?

We can locally model the space of oriented geodesics in this model by (&,7) € C?
where the unit parameterised geodesic is [23]

. tanhr 1
Z:.T1+Z.ZU2:T]+7— .’L'gzw.

§

With respect to these coordinates the neutral metric is

i (1 1 1
ds® = -7 <52de ~ @l & 52d”2> ’

(5)

and the Laplacian is
1
Agu = 8Im <§28gu + 8§(€28£u)> .
Note that

o0 1 (18+18 sinhr@)
or  cosh’r \£0z €0z ¢ ot)°
Now a straight-forward calculation establishes the following identity

[0 (1 1 1 1 >
sar =it | gy (s =gt )= g =0

Thus, by integration by parts, as long as the transverse gradient of f falls off at the
boundary faster than |{|, the boundary terms vanish and we get

ANguyp = 0.
O
In Section 3.1 unit (pseudo-)circles in flat planes are proven to be the domains of

integration of a mean value theorem for solutions of the ultrahyperbolic equation and to
generate doubly ruled surfaces in the underlying R3. We now present a local conformally
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flat coordinate system for L(H?) using the hyperboloid model of hyperbolic 3-space H?,
which lets one explicitly construct such doubly ruled surfaces in H3.

In the hyperboloid model in Minkowski space R3T!, H? is the hyperboloid a:% —x3 —
T3 — x% = 1 and the oriented geodesics are the intersections with oriented planes of
Lorentz signature through the origin in R3*!,

An oriented geodesic in H? in the ball model can be uniquely determined by the
directions at the boundary (u1, pe) € S? x S2. These directions (p1, u2) are exactly the
null directions on the Lorentz plane.

The relationships between the complex coordinates (p1, p12) € C? obtained by stere-
ographic projection on each S? factor and the complex coordinates (£, 7) introduced in

Theorem 8 is

-1
f=%<ﬂ1+i> 772%<—M1+%)-

Proposition 9. If (1, u2) are the standard holomorphic coordinates on L(H?), consider
the complex combination

(14 pofio)fin + (1 + pafin)fiz +[(1 — pofiz)fin — (1 — pafi1)fio]

A ——
1 — pyjiypafio

Zy — (1 + popi2)pa + (1 + pa i) ro — i[(1 — pofi)fin — (1 — pfin) i)
L — pa iy pzfio
The flat neutral metric ds? = dZ1dZ, — dZydZ> pulled back by the above is equal to 02G
where

q_ L mpl
— K172
1 — |pa]?|pal?
The inverse mapping from (u1, u2) to (Z1,Z2) is given by
S A-B
pr = J(A+B)— 3 (4P — 1B +2 = /(AR — [BF + 22— [A~ BE[A+ BP
(6)
- A+ B
o = $(A-B)- 35 5k (1AP = B + 2 - AP =B+ 27 - [~ BEIA+ B

(7

~—

where A = 3(Zy + Z3) and B = 5:(Z1 — Z).
Proof. A direct calculation. a

In Section 3.2 these transformations will be used to construct surfaces in H? that are
ruled by geodesics in two distinct ways - doubly ruled surfaces.

3. THE ULTRAHYPERBOLIC EQUATION

In this section solutions of the ultrahyperbolic equation (1) are studied. A mean
value property for such solutions is presented along with its interpretation in terms
of doubly ruled surfaces in R3. Classically it was known that a non-flat doubly ruled
surface in R? is either a one-sheeted hyperboloid or a hyperbolic paraboloid [40]. The
construction of doubly ruled surfaces is extended to hyperbolic 3-space and the analogue
of the 1-sheeted hyperboloid is exhibited. An explicit geometric formula is then given
for the ultrahyperbolic equation with data given on a certain null hypersurface.
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3.1. Mean Value Theorem. The X-ray transform takes a function f : R? — R to
uy : . = R by integrating over lines. In 1937 Fritz John showed that if a function
f satisfies certain fall-off conditions at infinity (which hold for compactly supported
functions), then uy satisfies the ultrahyperbolic equation (1), [46].

The link between the ultrahyperbolic equation (1) and the neutral metric is

Theorem 10. [8] Let u : R*2 — R and v : L — R be related by v = Q~'u, where Q is
the conformal factor.

Then w is a solution of the ultrahyperbolic equation (1) iff v is in the kernel of the
Laplacian of the neutral metric: Agv = 0.

Leifur Asgeirsson [2] had earlier shown that solutions of the ultrahyperbolic equation
satisfy a mean value property. In particular, for v : R%? — R a solution of equation (1)
satisfies

27 2
/ u(a+rcosf,b+rsind, c,d) d6’:/ u(a,b,c+rcosf,d+ rsinf) db, (8)
0 0

for all a,b,c,d € R and r > 0. The two domains of integration are circles of equal radius
lying in a pair of orthogonal planes 7, 7+ in R%? with definite induced metrics on them.

It can be shown that the mean value theorem holds over a much larger class of curves,
namely the image of these circles under any conformal map of R?2. We refer to such
curves as conjugate conics and these turn out to be pairs of circles, hyperbolae and
parabolae lying in orthogonal planes of various signatures:

Theorem 11. [8] [9] Let S and S+ be curves contained in orthogonal affine planes ©
and 7+ in R*2, respectively, which are one of the following pairs:

(1) Circles with equal and opposite radii +ry when the two planes are definite,

(2) Hyperbolae with equal and opposite radii +ry when the two planes are indefinite,

(3) Parabolae in non-intersecting degenerate affine planes determined by the prop-
erty that every point on S C 7 is null separated from every point on S+ C 7+,

Then the following mean value property holds for any solution u of the ultrahyperbolic

equation:
/u dl :/ u dl,
S S+

where dl is the line element induced on the curves by the flat metric g.

One can view this as a conformal extension of the original mean value theorem, one
that intertwines the classical conic sections, the ultrahyperbolic equation and neutral
geometry.

3.2. Doubly Ruled Surfaces. John also pointed out the relationship between the two
circles in Asgeirsson’s theorem and the double ruling of the hyperboloid of 1 sheet [46].
In fact, conjugate conics have been shown to correspond to the pairs of families of lines
of all non-planar doubly ruled surfaces in R3.

Theorem 12. [9] Let S, S+ be two curves in R>? representing the two one-parameter
families of lines L, L in R3. Then S, S+ are a pair of conjugate conics in R>? if and
only if L and L+ are the two families of generating lines of a non-planar doubly ruled
surface in 3-space.
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Figure 2. Halfspace Figure 3. Ball model
model

The geometric reason these curves yield a doubly ruled surface is that every point on
one curve is zero distance from every point on the other curve - this follows from the
neutral Pythagoras Theorem! But, as mentioned earlier, zero distance between oriented
lines implies intersection, we see that every line of one ruled surface intersects every
line of the other ruling, hence the double ruling.

While this result was originally proven in R?, it holds in any 3-dimensional space
of constant curvature, where the canonical neutral Kahler metric plays the same role.
To demonstrate this, let us construct doubly ruled surfaces in 3-dimensional hyperbolic
space H?.

Recall the conformal coordinates for L(H?) given in equations (6) and (7). To gen-
erate the hyperbolic equivalent of the 1-sheeted hyperboloid, the two curves (parame-
terized by u) are circles of radii +ry in two definite planes:

Z1 = ’I”oew ZQ = 0,
and
Z1 =0 ZQ == ’I“Oeiu.

For the curves we can view the doubly ruled surfaces in either the upper half-space
model or the ball model of H3. For the former, one uses the equations (5), while for
the latter one can use

v

po(1 + pafin)e’ — p1 (14 pojiz)e™
(L4 pan) (1 + popiz) coshv + [(1 4 pfio) (1 + pofin)(1 + pafin) (1 + pofiz)]

T+ 1x9 =

D=

(L4 papn) (1 — popiz)e’ — (1 + popiz)(1 — pajpin)e”
-
2 ((1 + pfin) (1 + piofiz) coshv + [(1 + pafin) (1 + pofin) (1 + pafin)(1 + pofiz)] 2)
Figure 1 is a plot of a doubly ruled surface in the upper half-space model while Figure
2 is in the ball model of hyperbolic 3-space. These are the hyperbolic equivalent of the

1-sheeted hyperboloid, although they satisfy a fourth order (rather than second order)
polynomial equation.

r3 =

3.3. Cauchy Problem for the Ultrahyperbolic Equation. One way to reconcile
the difference between the dimension of IL(R?) and that of R? is to consider the problem
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of determining the value of a solution v : . — R of the Laplace equation
A(;,U = O,

on all of oriented line space L, given only the values of the function on a null hypersurface
H CL.

Consider the case where the data is known on the hypersurface generated by all
oriented lines parallel to a fixed plane in Py C R3 - the case of regular dimension zero
focal set Hp in Proposition 3.

This null hypersurface is suitable as a boundary for the Cauchy problem, as proven by
John [46]. In fact, it can be foliated both by a—planes and S—planes - the former being
the oriented lines parallel to Py in a fixed direction, while the latter are all oriented
lines parallel to Py at a fixed height.

Denote

H={vel| | R}
Clearly H = S! x C and for convenience, suppose that Py is horizontal in standard
coordinates, so that in complex coordinates the hypersurface is &€ = €%, since the only
restriction on the oriented line is that its direction lies along the equator.

The distance between parallel lines in R? induces the metric (4) and associated
distance function ||.||. In fact, there is an invariant metric on H with volume form
d*V ol = dn dn db.

Suppose that 79 ¢ H and consider the intersection of this null hypersurface with
the null cone Cy(79) NH = S! x R. This surface intersects each fibre in an affine line.
Let Pro(y) be the projection of v onto this affine line with respect to the fibre metric:
Pry:S! xR? - S! x R.

We now prove the following explicit geometric formula that determines the value of a
solution of the ultrahyperbolic equation from its value on the null hypersurface of type
Hp in L:

Theorem 13. Ifv : L — R is a function satisfying the ultrahyperbolic equation, then

at an oriented line g
) —v(Pro(v)) 3
& [[] =P €V
YEH Y= oY

where Pro(y) is projection onto the intersection of the null cone of vy with the a-plane
through ~y that lies in the null hypersurface H.

Proof. Our starting point is Fritz John’s formula (equation (13) of [46]) which gives the
solution of the ultrahyperbolic equation at an oriented line g by the cylindrical average
over all planes parallel to 7o:

v(0) = —+ /OOO Mdﬁ (9)

2
R) = ;ﬂ/ // p(r, s)drds da,

PR« is the plane parallel to 7o at a distance R and angle «, and (r,s) are flat coordi-
nates on that plane.
Consider the map

where

z = (QVR + (e — Ve ) (e + vPem)s) (10)

1+
1

x3 = ((1 — vD)R — (7€ + ve ) — (et — ve )s). (11)

1+vp
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For fixed R € R, v € C and A € [0,27), the map (r,s) — (2(r,s),23(r,s)) € R?
paramaterizes the plane a distance R from the origin with normal direction v. Changing
A rotates the r- and s-axes in the plane.

By a translation we can assume g contains the origin and so has complex coordinates
(& = &,n = 0). Let us restrict attention to planes that are parallel 7. Thus the normal
direction of P(g ) is perpendicular to the direction of 79, we have

o + €
V= ———=-,
1 _é’oeza

where a € [0, 2m).

The quantity R is then just the distance from the plane to the line vy. Finally we
want to rotate the ruling by s on the plane so that it is horizontal and thus a curve in
‘H. Clearly this is achieved by
V= T‘oeiA,

or more explicitly

. . . — . 1
A= g [Qrel o = [ferer D)
2 [(Go+emi) (1 — Eoe'®) (1= oe™")(1 — &oe™®)
The first of these is invertible for fixed &y, A < a.
The horizontal ruling for P4 ) is

2v 1—vr

= R A
§ 1+vr +1+w7

re'd + ise’

1—vp 2|y|
x3 = — T
ST 14w 14w
The direction of the ruling is
os C 9: " 0z

so that the complex coordinates are £ = ie*4 and

1 _.92 . To — { 1A
= 5(z — 2w3& — =—(r—iR .
1= 4~ 2oag — 36) = (=) (1 ) o
Thus we have parameterized H by coordinates (R, a,r) and a straightforward calcula-
tion shows that the fibre metric is simply

dndij = dR* + dr? and d3V ol = drdRdo.

The null cone of g consists of all lines that either intersect or are parallel to it. For
non-horizontal vy the null cone intersects the null hypersurface 7 at the lines that
intersect g, namely those with coordinates (R = 0,«,r) which is a line through the
origin in each fibre. We have chosen 7y to contain the origin in R?, which is why the
line in the fibre is through the origin. More generally the intersection of the null cone
with a fibre is an affine line (not necessarily through the origin), as claimed.

Thus the fibre projection is simply Pro(R,«,r) = (0,a,r) and

R=|y—Pro(y)l-
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Now putting this together with the integral formula

2w 1
v (7 / / // p(r,s)drds — // p(r,s)drds| dRdo
P(R,a) Po,a)
2
2ﬂ2/ / / v(R,a,T) (O,a,r)deRda
—v(P
o ff] et ) v
yEH ||7 Pro(7)|l
as claimed. 0

4. ToPOLOGICAL CONSIDERATIONS

In this section global topological aspects of neutral metrics and almost product struc-
tures are explored. These include the relationship between umbilic points on surfaces in
R3 and complex points on Lagrangian surfaces in L, and an associated boundary value
problem for the Cauchy-Riemann operator. The significance of these constructions for
a number of conjectures from classical surface theory is indicated.

Some background on the problems of 4-manifold topology are discussed with partic-
ular attention to codimension two. The significance of neutral metrics to these issues is
that they are uniquely capable of quantifying codimension two topological phenomena,
and thus can be used as geometric tools to resolve certain long-standing questions. For
the case of closed 4-manifolds, we end with a discussion of topological obstructions that
arise to certain neutral geometric structures.

4.1. Global Results. Topological aspects of neutral metrics become evident in the
identification of complex points on Lagrangian surfaces in I with umbilic points on
surfaces in R3 [37].

The Lagrangian surface ¥ C |mathbbL is formed by the oriented normal lines to the
surface S C R3 and the index i(p) € Z/2 of an isolated umbilic point p € S on a convex
surface is exactly one half of the complex index of the corresponding complex point
v € X: I(y) = 2i(p) € Z. Thus problems of classical surface theory can be explored
through studying Lagrangian surfaces in the four dimensional space of oriented lines 1L
with its neutral metric G.

The metric induced on a Lagrangian surface is Lorentz or degenerate - the degenerate
points being the umbilic points of S and the null cone at « being the principal directions
of S at p. The indices of isolated umbilic points carry geometric information from the
neutral metric and vice versa.

If an isolated umbilic point p has half-integer index then the principal foliation around
p is non-orientable - it defines a line field rather than a vector field about the umbilic
point. The foliation is orientable if the index is an integer. The following theorem
establishes a topological version of a result of Ferdinand Joachimsthal [45] for surfaces
intersecting at a constant angle:

Theorem 14. [33] If S; and Sa are smooth convex surfaces intersecting with constant
angle along a curve that is not umbilic in either S1 or So, then the principal foliations
of the two surfaces along the curve are either both orientable, or both non-orientable.
That is, if i1 € Z/2 is the sum of the umbilic indices inside the curve of intersection
on Sy and iy € Z/2 is the sum of the umbilic indices inside the curve of intersection on
Sy then
211 = 219 mod 2.
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Pushing deeper, if one considers the problem of finding a holomorphic disc in I. whose
boundary lies on a given Lagrangian surface ¥, one encounters a classical problem of
Riemann-Hilbert for the Cauchy-Riemann operator. Given a totally real surface ¥ in
a complex surface M, the Riemann-Hilbert problem seeks a map f: (D,0D) — (M, X)
which is holomorphic: it lies in the kernel of the Cauchy-Riemann operator df = 0. For
this to be an elliptic boundary value problem it is required that the boundary surface X
be totally real i.e. has no complex points. In the Riemannian case Lagrangian implies
totally real, and so Lagrangian boundary conditions are often used when the ambient
metric is Riemannian.

In our case, due to the neutral signature of the metric formed by the composition of
the symplectic structure (which defines Lagrangian) and the complex structure (which
defines holomorphic), new features arise. In particular, Lagrangian surfaces may not be
totally real, and therefore at complex points they are not suitable as a boundary con-
dition for the d-operator. If, however, the boundary surface is assumed to be spacelike
with respect to the metric, then by the neutral Wirtinger identity it is also totally real
and is suitable.

The deformation from Lagrangian to spacelike by the addition of a holomorphic
twist can be achieved over an open hemisphere. This contactification of the problem
throws away the surface S in R3, as the perturbed spacelike surface 3 in L(R3) forms
a 2-parameter family of twisting oriented lines in R? that are not orthogonal to any
surface. Any holomorphic disc with boundary lying on ¥ yields a holomorphic disc
with boundary lying on ¥ by subtracting the holomorphic twist and so the problems
are equivalent over a hemisphere.

The Riemann-Hilbert problem then follows the standard case, with the linearisation
at a solution defining an elliptic boundary value problem with analytic index Z given
by

T = Dim Ker 9 — Dim Coker 0.
The analytic index for the problem is well-known to be related to the Keller-Maslov
index p(0D,Y) along the boundary by

I=p+2.

The Keller-Maslov index in the case of a section of LL is given by the sum 7 of the umbilic
indices inside the curve D in the boundary ¥, as viewed in R3 [37)]:

w = 4.
For the Keller-Maslov class to control the dimension of the space of holomorphic discs,
one needs the dimension of the cokernel to be zero. If the problem is Fredholm regular,
by a small perturbation the cokernel vanishes and the space of holomorphic discs is
indeed determined by the number of enclosed umbilic points.

Remarkably, the Riemann-Hilbert problem associated with a convex sphere contain-
ing a single umbilic point is Fredholm regular:

Theorem 15. [30] Let ¥ C L be a Lagrangian sphere with a single isolated complex
point. Then the Riemann-Hilbert problem with boundary % is Fredholm reqular.

The reason behind this result is that the Euclidean isometry group acts holomorphi-
cally and symplectically on IL, thus preserving the problem. The action is also transitive
and so fixing the single complex point one considers the equivariant problem, the result
being that it is Fredholm regular, as in the totally real case.

The non-existence of a convex sphere containing a single umbilic point is the famous
conjecture of Constantin Carathéodory, and Theorem 15 gives the reason the Conjecture
is true. Namely, were such a remarkable surface S to exist, the Riemann-Hilbert problem
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with boundary given by the normal lines ¥ would be Fredholm regular and so have
the property that the dimension of the space of parameterised holomorphic discs with
boundary lying on it would be entirely determined by the number of umbilic points in
the interior on S.

7T = Dim Ker 0 = 4i + 2 (12)

This property would also hold for a dense set of perturbations of .S in an appropriate
function space. To show that such a surface S cannot exist, one can seek to find
violations of equation (12), in particular, a holomorphic disc which encloses a totally
real disc on the boundary .

By equation (12), if the boundary encloses a totally real disc, then Z = 2. However,
since the M&bius group acts on the space of parameterized holomorphic discs, the space
of unparameterized holomorphic discs is 2 — 3 = —1. Thus, over an umbilic-free region
of the remarkable surface S it should be impossible to solve the d-problem.

The proof of the Carathéodory Conjecture in [35] follows from the existence of holo-
morphic discs with boundary enclosing umbilic-free regions, as established by evolving
to them using mean curvature flow of a spacelike surface in L, thus disproving equation
(12).

At this point in time two thirds of the proof given in [35] has appeared in print, with
the final part containing the boundary estimates for mean curvature flow currently
under review.

In fact, the interior estimates required to prove long time existence and convergence
hold for more general spacelike mean curvature flow with respect to indefinite metrics
satisfying certain curvature conditions [32].

The final step of the proof of the Conjecture is the establishment of boundary esti-
mates for mean curvature flow in I and sufficient control to show that the flow weakly
converges in an appropriate function space to a holomorphic disc. The boundary con-
ditions used for mean curvature flow (a second order system) include a constant angle
condition and an asymptotic holomorphicity condition.

The constant angle condition is defined between a pair of spacelike planes that inter-
sect along a line and is hyperbolic in nature. The asymptotic holomorphicity condition
ensures that the ultimate disc is holomorphic rather than just maximal.

The sizes of the constant hyperbolic angle and the added holomorphic twist are free
parameters in the evolution and can be used to control the flowing surface. If one views
it as a codimension two capillary problem, the effect of the parameter changes is to
increase the friction at the boundary, stopping it from skating off the hemisphere, thus
preserving strict parabolicity.

An analogous result in the rotationally symmetric case for mean curvature flow in
the space of oriented lines with Dirichlet and Neumann boundary conditions shows that
the evolving surface can be made to converge to a holomorphic disc - in this case to
a family of holomorphic discs called the Bishop family [6] - or to a maximal surface,
depending on the boundary condition imposed [28].

For the full flow one can then show that:

Theorem 16. [35] Let S be a C3T smooth oriented conver surface in R without
umbilic points and suppose that the Gauss image of S contains a closed hemisphere.
Let 3 C 1L be the oriented normal lines of S forming a Lagrangian surface in the space
of oriented lines.

Then 3f : D — L with f € C}T%(D) N C°(D) satisfying

loc
(i) f is holomorphic,
(i) f(oD) C x.
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This would conclude the proof of the Carathéodory Conjecture for C3+® smooth
surfaces.

The appearance of Gauss hemispheres here is noteworthy, for this meets with a
conjecture of Victor Toponogov that a complete convex plane must have an umbilic
point, albeit at infinity [71]. Toponogov showed that such planes have hemispheres as
Gauss image and established his conjecture under certain fall-off conditions at infinity.

In fact, the same reasoning as above that pits Fredholm regularity against mean
curvature flow proves the Toponogov Conjecture:

Theorem 17. [31] Every C3t®-smooth complete convex embedding of the plane P,
satisfies infp |k — Kol = 0.

The proof follows from applying Theorem 16 in this case, while Fredholm regularity
is established easily, as a putative counter-example is by assumption totally real (even
at infinity).

Without the high degree of symmetry of the Euclidean group, one would not expect
Fredholm regularity to hold and this obstructs the generalisation of the Carathéodory
Conjecture to non-Euclidean ambient metrics. This turns out to be the case and the
delicate nature of the problem is revealed:

Theorem 18. [26] For all € > 0, there exists a smooth Riemannian metric g on R3
and a smooth strictly conver 2-sphere S C R such that

(i) S has a single umbilic point,
(ii) lg = goll* < e
where ||.|| is the Lo norm on R3 with respect to the flat metric go.

The proof here is constructive: the Euclidean metric is deformed while keeping the
standard round 2-sphere fixed (although not round in the deformed metric) and one
can essentially brush the principal foliation of the surface into any configuration one
chooses by changing the ambient geometry.

Finally, establishing the local index bound i(p) < 1 for any isolated umbilic point p
has long been the preferred route to proving the Carathéodory Conjecture in the real
analytic case [38] [44]. The above methods can also be used to find a slightly weaker
local index bound for isolated umbilics on smooth surfaces:

Theorem 19. [34] The index of an isolated umbilic p on a C>% surface in R3 satisfies
i(p) < 2.

The proof follows from the extension of Theorem 15 to surfaces of higher genus by
removing hyperbolic umbilic points and adding totally real cross-caps to the Lagrangian
section. The existence of holomorphic discs over open hemispheres again contradicts
Fredholm regularity and the local index bound follows.

Once again, the role of the Euclidean isometry group is paramount, and even a small
perturbation of the ambient metric means that the index bound does not hold.

Theorem 20. [26] For alle > 0 and k € Z/2, there exists a smooth Riemannian metric
g on R® and a smooth embedded surface S C R® such that

(i) S has an isolated umbilic point of index k,
(i) lg — goll* < e,
where ||.|| is the Ly norm on R3 with respect to the flat metric go.
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Finally, the local umbilic index bound i(p) < 1 of Hamburger [38] for real analytic
surfaces has recently been used to prove results on the zeros of certain holomorphic
polynomials. In particular, a polynomial whose zero set is invariant under inversion in

the unit circle is called self-inversive [7] [47] [57] [66] [72].

Theorem 21. [29] Let Py be a polynomial of degree N with self-inversive second deriv-
ative and suppose that none of the roots of Py lies on the unit circle. Then the number
of roots (counted with multiplicity) of Pn inside the unit circle is less than or equal to

IN/2) + 1.

This result is in the spirit of a converse to the Gauss-Lucas theorem [51] in which the
zeros of the first derivative of a polynomial are restricted by the zeros of the polynomial.
Here, however, by methods of differential geometry, the locations of the zeros of the
second derivative restrict the zeros of the polynomial - the first such application. It is
also worth noting that the result is sharp.

The method of proof is to take a polynomial with self-inversive second derivative and
to construct a real analytic strictly convex with an isolated umbilic point whose index
is determined by the number of zeros inside the unit circle.

4.2. Four Manifold Topology. The proof by Grigori Perelman of Thurston’s Ge-
ometrization Conjecture [59][60][61] naturally raises the question as to whether closed
4-dimensional manifolds can be geometrized in some way. The approach in three dimen-
sions, however, does not apply in higher dimensions and even basic things are harder.

For example, any finitely presented group can be the fundamental group of a smooth
closed 4-manifold, while the fundamental group of a prime 3-manifold must be a quotient
of the isometry group of one of the eight Thurston homogenous geometries [69], and so
it is clear that new geometric paradigms are required.

To make matters worse, while in three dimensions there is no distinction between
smooth, piecewise-linear and topological structures on closed manifolds, in higher di-
mension this may not be true. If one considers open manifolds, these problems are
compounded further. In each dimension n > 3 there are uncountably many fake R™’s -
open topological manifolds that are homotopy equivalent to, but not homeomorphic to
R™ [12][24][54]. While many of these involve infinite constructions, an example of Barry
Mazur in dimension four requires only the attachment of two thickened cells [53].

Four dimensions also has its share of peculiar problems that do not arise in higher
dimensions. In particular, the Whitney trick, in which closed loops are contracted to
a point across a given disc, plays a major role in many higher dimensional results, for
example Stephen Smale’s proof of the h-cobordism theorem [67]. The issue is that,
while in dimensions five and greater a generic 2-disc is embedded, in dimension four a
generic 2-disc is only immersed and will have self-intersections, making it unsuitable to
contract loops across.

Against this array of formidable difficulties, the Disc Theorem of Micheal Freedman
[16] utilizes a doubly infinite codimension two construction to claim that there is a
topological work-around for the Whitney trick. This result leads to the proof of the
topological Poincaré Conjecture in dimension four, as well as the classification of all sim-
ply connected closed topological 4-manifolds based almost entirely on their intersection
form in the second homology.

Contradictions with Donaldson’s ground-breaking work on smooth 4-manifolds [14]
lead to extraordinary families of exotic manifolds (homeomorphic but not diffeomorphic)
not seen in any other dimension. Since the work of John Milnor [55] it has been known
that exotic differentiable structures in dimensions seven and above exist, but only in
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finitely many families. According to the Disc Theorem exotic differentiable structures
in dimension four occur in uncountable families - indeed, no 4-manifold is known to
have only countably many distinct differentiable structures.

Both the original Disk Theorem [16] and subsequent attempts to complete it [3] [17]
[18] [27] [39] have depended upon the iterative attachment of 1- and 2-handles or there
generalizations, as one attempts to push unwanted codimension two intersections to
infinity. The ultimate homeomorphism that is sought is shown to exist using Bing
shrinking and what is called decomposition space theory [5].

One key aspect of these efforts is that they all involve codimension two constructions
- gluing in thickened 2-discs or more general surfaces into 4-manifolds. The work in this
survey involves geometric paradigms associated with neutral metrics which can gain
more control of these codimension two constructions.

Unlike Riemannian metrics which exist on all smooth manifolds, neutral metrics
see the topology of the underlying manifold and can be used to express topological
invariants. The next section considers closed 4-manifolds and illustrates the manner in
which the existence of certain neutral metrics restricts the topology of the underlying
4-manifold. These are modest steps in the direction of understanding a tiny part of the
wild world of 4-manifolds in which there is a splitting 4 = 2 4 2.

4.3. Closed Neutral 4-manifolds. The simplest topological invariant of a closed 4-
manifold M is its Euler number x(M). Let H,(M,R) be the n'® homology group of
M with real coefficients and b,, be the associated Betti numbers n = 0,1,...,4. For a
closed connected 4-manifold we have by = by = 1, and b3 = b; by Poincaré duality and
the Euler number is defined

4
X(M) = "(=1)" dim Hy(M,R) = 2 — 2b; + by,

n=0

The Chern-Gauss-Bonnet Theorem states that one can express this geometrically as
€ ‘
X0 = s [ WP - 2ARic(g) P+ 35* a,,
327 M

for any metric g of definite (¢ = 1) or neutral signature (e = —1) [49].

On a closed 4-manifold there is a natural symmetric bilinear pairing on the integral
second homology Hy(M,Z). It is the sum of the number of transverse intersection
points between two surfaces representing the homology classes.

The intersection form can be diagonalised over R and the number of positive and
negative eigenvalues is denoted b, and b_, respectively. Thus by = by + b_ and the
signature T(M) = by — b_ is another topological invariant of M.

The existence of a neutral metric on a closed 4-manifold is equivalent to the existence
of a field of oriented tangent 2-planes on the manifold [52]. Moreover:

Theorem 22. [41] [48] [52] Let M be a closed 4-manifold admitting a neutral metric.
Then

X(M) 4+ 7(M) =0 mod 4 and X(M) —7(M) =0 mod 4. (13)
If M is simply connected, these conditions are sufficient for the existence of a neutral

metric.

Thus, neither S* nor CP? admit a neutral metric, while the K3 manifold does.
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Given a neutral metric ¢’ on M, the Euler number and signature can be expressed
in terms of curvature invariants by

-1 +12 —12 - 12 202 4
1 ‘17+2 —12 44

where W¥ is the Weyl curvature tensor split into its self-dual and anti-self-dual parts,
Ric is the Ricci tensor and S is the scalar curvature of ¢'.
From these and Theorem 7, the following can be proven

Theorem 23. [19] Let (M,g') be a closed, conformally flat, scalar flat, neutral 4-
manifold. If ¢ admits a parallel isometric paracomplex structure, then

T(M) =0 and X(M) > 0.

If, moreover, the Ricci tensor of g' has negative norm |Ric(g')|?> < 0, then M admits
a flat Riemannian metric.

On the other hand, Theorem 7 can also be used on Riemannian Einstein 4-manifolds
to find obstructions to parallel isometric paracomplex structures:

Theorem 24. [19] Let (M, g) be a closed Riemannian Einstein 4-manifold.
If g admits a parallel isometric paracomplez structure, then (M) = 0.

The K3 4-manifold, as well as the 4-manifolds CP2#kCP" for k = 3,5,7, admit
Riemannian Einstein metrics and isometric almost paracomplex structures, but, as a
consequence of Theorem 24, these almost paracomplex structures cannot be parallel.
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