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EDITORIAL

In this issue we print a letter from Tom Carroll, the previous President of the IMS,
which informs members about the recent action of the Society, taken to ensure this
country’s continued involvement with the International Mathematical Union.

All who knew him will miss Rex Dark, a true stalwart, whose obituary appears in this
issue. A short article by Des MacHale which poses some questions about the possible
orders of a group with trivial centre, incorporates the fruit of a conversation with Rex.

The review of Des MacHale’s Comic Sections Plus marks the first instance in the
Bulletin of a mother-daughter team of authors. One can only hope that this marks the
dawn of a new age of work-life balance among practioners of our ancient art.

The Annual Scientific Meeting will be held on Thursday 31st August and Friday 1st
September 2023 at the University of Limerick. The meeting is organised jointly by
members of the Department of Mathematics and Statistics at University of Limerick and
the Department of Mathematics and Computer Studies at Mary Immaculate College.
As we go to press, confirmed speakers include Norma Bargary (UL) Patrick Browne
(TUS) John Butler (TUD) Julie Crowley (MTU) James Cruickshank (Galway) Patrick
Farrell (Oxford) Emma Greenbank (UL) Thomas Heuttemann (QUB) Cónall Kelly
(UCC) Bernd Kreussler (MIC) Myrto Manolaki (UCD) and Katrin Wendland (TCD).

Organisers of all meetings supported by the Society should submit their reports to
the editor by the 15th of December, for publication in the Winter issue. The LaTeX
template for reports (template-report.tex) may be downloaded from the IMS website
https://irishmathsoc.org/bulletin/index.php?file=instruct. We do not dic-
tate any rigid format to be used by reporters on our scientific meetings or sponsored
meetings. Reports have sometimes included all abstracts, but it has become more usual
just to give a link to the website where these can be found. This is probably more appro-
priate in this networked environment, although one might worry about the permanence
of some of these conference websites. It might be worth the effort of reporters giving
a self-contained account, for the record, since the IMS website has a good chance of
remaining up indefinitely. Our template for meeting reports uses the bimsplain style,
which is much less restrictive than the bims style used for articles, classroom notes and
the like, and it should allow reasonably easy transfer of content from other formats.

Members are encouraged to submit (and promote the submission by others of) papers
for the Bulletin that are of general interest to readers. Apart from short research articles
and classroom notes, the Bulletin has carried articles on history of mathematics and
mathematical education, and well-written and interesting material of this kind remains
welcome. Expert surveys of active research areas are particularly appreciated, and I am
pleased to have two in the present issue. I would prefer it if the authors of short proofs
of FLT, RH, and the like would spare me their attentions.

The Bulletin is entirely the work of volunteers. The work of the Editor is made much
lighter by the generous assistance of the Editorial Board members, by the Book Reviews
Editor, Eleanor Lingham, the Problem Page Editor, Ian Short, the Website Manager,
Michael Mackey, and the DOI manager and guru of last resort, David Malone. I am
pleased to report that Colm Mulcahy has agreed to take on the editing of obituaries for
the future.
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EDITORIAL iii

For a limited time, beginning as soon as possible after the online publication of this
Bulletin, a printed and bound copy may be ordered online on a print-on-demand basis
at a minimal price1.

Editor, Bulletin IMS, Department of Mathematics and Statistics, Maynooth Univer-

sity, Co. Kildare W23 HW31, Ireland.

E-mail address: ims.bulletin@gmail.com

1Go to www.lulu.com and search for Irish Mathematical Society Bulletin.



LINKS FOR POSTGRADUATE STUDY

The following are the links provided by Irish Schools for prospective research students
in Mathematics:

DCU: mailto://maths@dcu.ie

TUD: mailto://chris.hills@tudublin.ie

ATU: mailto://creedon.leo@atu.ie

MTU:

http://www.ittralee.ie/en/CareersOffice/StudentsandGraduates/PostgraduateStudy/

UG: mailto://james.cruickshank@nuigalway.ie

MU: mailto://mathsstatspg@mu.ie

QUB:

http://web.am.qub.ac.uk/wp/msrc/msrc-home-page/postgrad_opportunities/

TCD: http://www.maths.tcd.ie/postgraduate/

UCC: http://www.ucc.ie/en/matsci/postgraduate/

UCD: mailto://nuria.garcia@ucd.ie

UL: mailto://sarah.mitchell@ul.ie

The remaining schools with Ph.D. programmes in Mathematics are invited to send their
preferred link to the editor.

E-mail address: ims.bulletin@gmail.com
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Letters to the Editor

The IMS and the IMU

From Tom Carroll

At last December’s committee meeting, it was suggested that I write a letter to the
Bulletin on the matter of Ireland’s membership of the International Mathematical Union
(the IMU).

The International Mathematical Union (https://www.mathunion.org) encourages
and supports international mathematical activities globally across all areas of pure
mathematics, applied mathematics, and mathematics education. The International
Congress of Mathematicians (the ICM) is organised under its auspices. Every four years,
prestigious prizes including the Fields Medals are awarded at the Opening Ceremony of
the ICM. The Secretariat of the IMU is currently based in Berlin and runs day-to-day
business. The Executive Committee, which includes the President Hiraku Nakajima
(Japan) and Secretary General Christoph Sorger (France), is drawn from the highest
international echelons of mathematics.

The members of the IMU are countries, currently numbering 85 in total. The level
of membership ranges from one to five and reflects the mathematical stature of the
member country. Ireland has been a member, a Group II member, since the 1950s. The
Group V members are the mathematical (and political) powerhouses internationally:
Brazil, Canada, China, France, Germany, Israel, Italy, Japan, Republic of Korea, Russia,
the United Kingdom, and the United States of America. Group n countries are entitled
to n votes at the General Assembly (GA) held every four years around the time of
the ICM. Derek Kitson (Secretary of the IMS) and I represented Ireland at the GA in
Helsinki last June. The membership dues increase nonlinearly as a function of the group
number: for Group II member countries, including Ireland, these are currently e2,920
p.a. while Group V members contribute e17,520.

Each member country is represented via an Adhering Organization (AO), which may
be its principal academy, a mathematical society, its research council or some other
institution or association of institutions, or an appropriate agency of its government.
Up to late 2019/early 2020, Ireland’s AO was the Royal Irish Academy (RIA). As I
understand it, the main reason the RIA decided to no longer act as Ireland’s AO was
its inability, or unwillingness, to continue to pay Ireland’s annual membership dues.
The IMS took over this role in 2020 - see Pauline Mellon’s President’s Report in IMS
Bulletin 86 for the background to this decision. The feeling then, and now, is that
Ireland’s membership is essential if we are to consider ourselves as seriously engaged
in the world of Mathematics. Letting our membership lapse, as would otherwise have
been the case, was unthinkable. Here is a link to Ireland’s page on the IMU website
(https://www.mathunion.org/imu-members/ireland) where the IMS is listed as the
AO.

Though a minuscule sum of money at a national scale, the annual IMU dues constitute
a significant commitment for our Society. Ireland’s 2020 membership was largely funded
through the generosity of various research centres and departments (see the President’s
Report mentioned above). Membership dues since then have been paid directly from
IMS funds, in part offset by the Society’s reduced outlay during the covid period, in
supporting conferences for example. Repeated efforts to elicit contributions from various
arms of government and the backing of VPs for Research in our various institutions have
been unsuccessful. The executive and the committee continue to explore new avenues
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towards meeting the Society’s commitment to paying the annual IMU membership dues
so that this encumbrance does not limit its other activities and initiatives.

It’s fair to say that taking on the role of AO to the IMU was not on the Society’s radar
prior to December 2019. Nevertheless, ‘We are where we are, however we got here. What
matters is where we go next.’ I personally believe that our Society can play a positive
and proactive role as AO, as does the LMS for the UK and the DMV for Germany, and
raise the profile of Ireland within the IMU. The IMS and its members are, after all,
those with the greatest stake in Ireland’s international mathematical reputation.

Tom Carroll, IMS President 2020-2022, Committee Member 2023-2024
UCC
Received 31-5-2023
t.carroll@ucc.ie



NOTICES FROM THE SOCIETY

Officers and Committee Members 2023

President Dr Leo Creedon ATU
Vice-President Dr Rachel Quinlan UG
Secretary Dr Derek Kitson MIC
Treasurer Dr Cónall Kelly UCC

Dr T. Carroll, Dr R. Flatley, Dr R. Gaburro, Prof. M. Mathieu, Prof. A. O’Shea,
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Applying for I.M.S. Membership

(1) The Irish Mathematical Society has reciprocity agreements with the American
Mathematical Society, the Deutsche Mathematiker Vereinigung, the Irish Mathemat-
ics Teachers Association, the London Mathematical Society, the Moscow Mathematical
Society, the New Zealand Mathematical Society and the Real Sociedad Matemática
Española.

(2) The current subscription fees are given below:

Institutional member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e200
Ordinary member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e30
Student member . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e15
DMV, IMTA, NZMS or RSME reciprocity member e15
AMS reciprocity member . . . . . . . . . . . . . . . . . . . . . . . . . $20
LMS reciprocity member (paying in Euro) . . . . . . . . e15
LMS reciprocity member (paying in Sterling) . . . . . £15

The subscription fees listed above should be paid in euro by means of electronic transfer,
a cheque drawn on a bank in the Irish Republic, or an international money-order.

(3) The subscription fee for ordinary membership can also be paid in a currency other
than euro using a cheque drawn on a foreign bank according to the following schedule:

If paid in United States currency then the subscription fee is US$ 40.
If paid in sterling then the subscription is £30.
If paid in any other currency then the subscription fee is the amount in that currency
equivalent to US$ 40.00.

The amounts given in the table above have been set for the current year to allow for
bank charges and possible changes in exchange rates.

(4) Any member with a bank account in the Irish Republic may pay his or her sub-
scription by a bank standing order using the form supplied by the Society.

(5) Any ordinary member who has reached the age of 65 years and has been a fully
paid up member for the previous five years may pay at the student membership rate of
subscription.

(6) Subscriptions normally fall due on 1 February each year.

(7) Cheques should be made payable to the Irish Mathematical Society.

(8) Any application for membership must be presented to the Committee of the I.M.S.
before it can be accepted. This Committee meets twice each year.

(9) Please send the completed application form, available at
http://www.irishmathsoc.org/links/apply.pdf

with one year’s subscription to:
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Dr Cónall Kelly
School of Mathematical Sciences

Western Gateway Building, Western Road
University College Cork

Cork, T12 XF62
Ireland

E-mail address: subscriptions.ims@gmail.com
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Rex Dark, 1942-2022

ARNOLD FELDMAN, JOHN MCDERMOTT AND MARTIN NEWELL

Rex Dark in 2005 (Photograph: Tracy Feldman)

Rex Dark was born in Huddersfield and raised in Leatherhead. An excellent student
from the start, he won several scholarships: first to his preparatory school, then to the

Key words and phrases. Rex Dark, Obituary.
Received on 15-12-2022.
DOI:10.33232/BIMS.0091.5.8.

©2023 Irish Mathematical Society
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6 FELDMAN, MCDERMOTT AND NEWELL

prestigious Charterhouse School in Godalming, Surrey and from there to Magdalene
College, Cambridge. Having achieved a double first degree he undertook research in
Group Theory under the supervision of J. E. Roseblade. This led to the award of a Ph.D
in 1968, for a thesis entitled “Nilpotent products of groups of prime order”. After a few
years teaching in Cambridge, Rex came to University College, Galway (later NUIG,
now University of Galway) in 1973 on what was originally a one-year appointment.
Fortunately for the UCG Mathematics department - and indeed for the college and local
community - Rex liked what he found and decided to stay. He remained in Galway for
the rest of his working life, taking early retirement in 2003 having reached the age of
60. After he retired from teaching, Rex continued to work on a variety of problems
in soluble and insoluble groups. His latest works, with collaborators from Spain and
the US, were published in 2022, and he left nearly completed manuscripts that will be
submitted for publication by his collaborators.

Rex was a wonderful colleague, and his contributions to the UCG Mathematics de-
partment - and to the wider mathematical community - were substantial and very much
appreciated. As a lecturer Rex was known for the clarity of his presentations and his
willingness to help students with their work in and out of the classroom. His research
talks were equally well-organized, clear, and insightful. In addition to the normal teach-
ing and research duties, he undertook his full share of the administrative chores. He
was one of the founders of the Irish Mathematics Society and of the series of annual
Groups in Galway meetings. He remained a staunch supporter of both through the
years, including in his retirement.

Rex was a master of the example and counterexample. His examples were beauti-
fully constructed using his vast knowledge of techniques, including those of his own
invention. Underlying them was his broad and deep understanding of groups coupled
with extraordinary attention to detail, often involving intricate computations, generally
done by hand. He had an extraordinary mental capacity, able to develop intricate com-
putations before writing them down, but also created computer programs as needed.
He was endlessly patient, working to perfect any project, producing draft after draft of
increasingly comprehensive, impeccably expressed, carefully referenced results until he
was satisfied that he had accounted for everything possible.

The impact of Rex’s work was substantial. He made significant contributions, either
alone or in different collaborations, particularly answering open questions and conjec-
tures by various authors. Early in his career, he produced the first complete group of
odd order (further tricky constructions provided an example of a complete group of the
smallest possible odd order). His contribution to the study of Camina groups was also
remarkable.

The impact of his work in the theory of Fitting classes and injectors deserves special
mention; the name of Rex Dark appears among the most relevant figures in the develop-
ment of the theory. His 1972 paper “Some examples in the theory of injectors of finite
soluble groups” so greatly changed the way group theorists looked at Fitting classes that
Doerk and Hawkes, in their comprehensive 1992 volume Finite Soluble Groups, devoted
two complete sections, more than 45 pages, to what they termed “Dark’s construction
– the theme & variations”. This paper contains the first publication of a Fitting class
whose Fischer F-subgroups were not F-injectors. (Later, he would discover also the first
Fitting set with non-pronormal Fischer F-subgroups.) B. Hartley, in the review about
this paper published in the Mathematical Reviews, wrote referring to this example:
“Fitting classes of any intricacy seem rather difficult to handle, and the problem is to
select one that is sufficiently complicated but still tractable. This the author succeeds
in doing with considerable ingenuity.”The main example presented in that 1972 paper
was actually less complicated than the first one Rex discovered. This more complicated,
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unpublished example was modified slightly in Lockett’s 1973 paper presenting the first
group with non-system-permutable F-injectors. More than 45 years later, Rex modern-
ized the construction of that unpublished example for use in a paper showing that said
example was in a technical sense the smallest possible.

The number of basic questions remaining unanswered in the Theory of Fitting classes
indicates the difficulty of the theory, especially in constructing suitable examples, and
shows the value of Rex’s work. That work also contributed answers to other related
fundamental questions, including different constructions of the associated injectors, and
permutability, for the dominant Fitting class of finite soluble groups with central π-socle,
as well as characterizations of injectors without recourse to the concept of a Fitting set.

His most recent papers involved generalizations of Carter subgroups and injectors in
π-separable groups, groups with automorphism groups of smaller order than the groups
themselves, and π-special modules. Referring to the first result just mentioned, in the
corresponding review published in the Mathematical Reviews, Luis M. Ezquerro writes:
“In my opinion, this is the best tribute to Carter on the occasion of his recent death on
February 21, 2022.”

Rex was also very committed to many non-mathematical interests. In college, for
example, he was an active union member and was shop steward for a while. He was also a
long-time member of the UCGMountaineering Club. In addition he was deeply involved
with the Galway branch of Alliance Francaise and with the Galway Mountain Rescue
Team. Outside UCG, his primary loyalty was perhaps to Saint Nicholas’ Collegiate
Church. He was a chorister there for a while, and took on the position of treasurer for six
years. Moreover, he took to the stage with the Lamplighters, a drama group associated
with the church. He continued his service to the Church of Ireland in Westport, where
he spent the last of his retirement years.

Rex was a familiar figure making his regular cycling commute from Moycullen to
UCG. He also had a small folding bike — one of the first around Galway — which he
kept in college to use for quick trips into town. If he wasn’t cycling, he was probably
walking, thinking nothing of the six mile journey from Valencia to the maths department
of the university in an outlying suburb. He would take the train with colleagues to be
sociable, but walk when on his own.

He was also an inveterate traveller. In addition to regular journeys to his home in
France he attended conferences in many places. He spent sabbaticals and/or working
visits with collaborators in Germany, Italy, Spain and the United States. Moreover, he
made many trips to see his brother Michael (his only sibling) when the latter worked
abroad. Although he eventually acquired a debit card, he traveled without ever having
a credit card, a feat that became more extraordinary with every year that passed.

Many warm tributes have been paid to him by former colleagues who remarked in
particular on his courtesy, helpfulness, quiet but wry sense of humour and of course
his brilliant mind. Former students also remember him with affection. They recall his
patient mentoring and his generosity with his time, as well as his enthusiastic and inspir-
ing lectures. Collaborators reported that it was an honor and a privilege to work with
him, since Rex contributed his ideas, effort, and knowledge unreservedly, generously
and with incredible humility.

Throughout his life Rex was very close to Michael and his family. In the beautiful
eulogy given at his funeral, his niece caught the essence of the man when she concluded
that he remained the same always — kind, modest, brilliant, and completely original.

(A version of this article has appeared in the London Mathematical Society Newslet-
ter.)
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From CT scans to 4-manifold topology via neutral geometry

BRENDAN GUILFOYLE

Abstract. In this survey paper the ultrahyperbolic equation in dimension four is dis-
cussed from a geometric, analytic and topological point of view. The geometry centres
on the canonical neutral metric on the space of oriented geodesics of 3-dimensional
space-forms, the analysis discusses a mean value theorem for solutions of the equation
and presents a new solution of the Cauchy problem over a certain family of null hyper-
surfaces, while the topology relates to generalizations of codimension two foliations
of 4-manifolds.

The air is full of an infinity of straight lines and rays
which cut across each other without displacing each other and
which reproduce on whatever they encounter
the true form of their cause.

Leonardo da Vinci
MS. A. 2v, 1490

1. Introduction

Our starting point is, as the title suggests, the acquisition of density profiles of
biological systems using the loss of intensity experienced by a ray traversing the system.
Basic mathematical physics arguments imply that this loss is modelled by the integral
of the density function along the ray. One goal of Computerized Tomography is to
invert the X-ray transform: reconstruct a real-valued function on R3 from its integrals
over families of lines.

The reconstruction of a function on the plane from its value on all lines, or more
generally, a function on Euclidean space from its value on all hyperplanes, dates back at
least to Johann Radon [62]. One could argue that Allan MacLeod Cormack’s 1979 Nobel
prize for the theoretical results behind CAT scans [11] is the closest that mathematics
has come to winning a Nobel prize, albeit in Medicine. The choice of axial rays reduces
the inversion of the X-ray transform to that of the Radon transform over planes in R3

[43].
The basic problems of tomography - acquisition and reconstruction - arise far more

widely than just medical diagnostics, finding application in industry [74], geology [70],
archaeology [58] and transport security [56]. Indeed, advances in CT technology, trialed
in Shannon Airport recently, could warrant the removal of the 100ml liquid rule for
airplane travellers globally [63].

Rather surprisingly, sitting behind the X-ray transform and its many applications
is a largely unstudied second order differential equation: the ultrahyperbolic equation.
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For a function u of four variables (X1, X2, X3, X4) the equation is

∂2u

∂X2
1

+
∂2u

∂X2
2

− ∂2u

∂X2
3

− ∂2u

∂X2
4

= 0. (1)

The reasons for the relative paucity of mathematical research on the equation despite
the link to tomography will be discussed below.

The purpose of this mainly expository paper is to describe recent research on the
ultrahyperbolic equation, its geometric context and its applications. It turns out that
the ultrahyperbolic equation is best viewed in terms of a conformal class of neutral
metrics and that in this context it advances new paradigms that can contribute to
the understanding of four dimensional topology. We now discuss the mathematical
background of this undertaking before giving a more detailed summary of the paper.

1.1. Background. The X-ray transform of a real valued function on R3 is defined by
taking its integral over (affine) lines of R3. That is, given a real function f : R3 → R
and a line γ in R3, let

uf (γ) =

∫

γ
fdr,

where dr is the unit line element induced on γ by the Euclidean metric on R3.
Thus we can view the X-ray transform of a function f (with appropriate behaviour

at infinity) as a map uf : L(R3) → R : γ 7→ uf (γ), where L(R3), or L for short, is the
space of oriented lines in R3. Here we pick an orientation on the line to simplify later
local constructions, much as Leonardo does when invoking rays as distinct from lines,
and note that the space L double covers the space of lines.

In comparison, the Radon transform takes a real-valued function on R3 and integrates
it over planes in R3. By elementary considerations, the space of affine planes in R3 is
three dimensional, equal to the dimension of the underlying space, while the space of
oriented lines is four dimensional.

Thus, by dimension count, if we consider the problem of inverting the two transforms,
given a function on planes one can reconstruct the original function on R3, while the
problem is over-determined for functions on lines. The consistency condition for a
function on line space to come from an integral of a function on R3 is exactly the
ultrahyperbolic equation [46].

Viewed simply as a partial differential equation, equation (1) is neither elliptic nor
hyperbolic, and so many standard techniques of partial differential equation do not
apply. Indeed, in early editions of their influential classic Methods of Mathematical
Physics, Richard Courant and David Hilbert showed that the ultrahyperbolic equation
in R2,2 has an ill-posed Cauchy boundary value problem when the boundary has Lorentz
signature, thus relegating the equation as unphysical in a mechanical sense.

It was Fritz John who in 1937 proved that, to the contrary, the ultrahyperbolic
equation can have a well-posed characteristic boundary value problem if the boundary
3-manifold is assumed to be null, rather than Lorentz [46]. Later editions of Courant
and Hilbert’s book acknowledge John’s contribution and his discovery of the link to line
space, but study of the ultrahyperbolic equation never took off in the way that it did
for elliptic and hyperbolic equations.

On the other hand, by reducing the X-ray transform to the Radon transform for
certain null configurations of lines, Cormack side-stepped the ultrahyperbolic equation
altogether. Moreover, for applied mathematicians, the equation, or its associated John’s
equations, arises mainly as a compatibility condition if more than a 3-manifold’s worth
of data is acquired. Its possible utility from that perspective therefore is to check such
excess data, rather than to help reconstruct the function.



From CT scans to 4-manifold topology 11

Our first goal, contained in Section 2 is the geometrization of the ultrahyperbolic
equation. In particular, we view it as the Laplace equation of the canonical metric
G of signature (+ + −−) on the space L of oriented lines in R3 [36]. The fact that
G is conformally flat and has zero scalar curvature means that a conformal multiple
of a harmonic function satisfies the flat ultrahyperbolic equation (1). Fritz John did
not explicitly use the neutral metric, but at the cost of the introduction of unmotivated
multiplicative factors in calculations, factors that can now be related with the conformal
factor of the metric.

The introduction of the neutral metric not only clarifies the ultrahyperbolic equation,
but it highlights the role of the conformal group in tomography. Properties such as
conformal flatness of a metric, zero distance between points or nullity of a hypersurface
are properties of the conformal class of a metric. Moreover, mathematical results can
be extended by applying conformal maps [9].

Section 2 describes how these neutral conformal structures arise in the space of ori-
ented geodesics of any 3-dimensional space-form, namely R3, S3 and H3. The common-
ality between these three spaces allows one to apply many of the results (mean value
theorem, doubly ruled surfaces, null boundary problems) to non-flat spaces. Surpris-
ingly, electrical impedance tomography calls for negative curvature and so tomography
in hyperbolic 3-space is not quite as fanciful as it may at first seem - see [4]. The link
between the ultrahyperbolic equation and the neutral metric on the space of oriented
geodesics in H3 as given in Theorem 8 is new and so the full proof is given below.

In Section 3 conformal methods are used to extend both a classical mean value
theorem and its interpretation in terms of doubly ruled surfaces in R3. Aside from the
discussion of the conformal extension of the mean value theorem, the section contains a
new geometric formula for a solution of the ultrahyperbolic equation given only values
on the null hypersurface formed by lines parallel to a fixed plane. In fact, this example
was considered by John, but the geometric version we present using the null cone of the
neutral metric has not appeared elsewhere.

The final Section turns to global aspects of complex points on Lagrangian surfaces in
L and an associated boundary value problem for the Cauchy-Riemann operator. This
proof of the Carathéodory Conjecture using the canonical neutral metric on the space
of oriented lines [35] is under review, but significant parts of the arguments have now
appeared in print. In particular, the essence as to why the Conjecture is true - namely
the size of the Euclidean group - has been established [30] and shown to be sharp [26].

The efficacy of second order methods of parabolic partial differentiation in higher
codimension has also been proven in this context for both interior [32] and boundary
problems [28]. The final argument hinges on the technical point as to whether a hyper-
bolic angle condition in codimension two in dimension four can be made sticky enough
to confine the boundary of a line congruence evolving under mean curvature flow. This
is the sole remaining part of the proof under review.

Having established the why, this approach to the Carathédory Conjecture also lends
itself to other independent methods of completion - one needs only to establish the
existence of enough holomorphic discs attached to a given Lagrangian surface and the
Conjecture follows. Indeed, a local index bound [34] and a conjecture of Toponogov [31]
would also follow from existence of such families. This could be proven, for example, by
the use of the method of continuity and pseudo-holomorphic curves [25], which would
be a first order rather than second order proof. In any event, the acceptance that this
infamous Conjecture has been finally put to rest will probably only come about when
it has been proven at least twice.

A positive outcome of these developments has been the first application of differential
geometry in the theory of complex polynomial: the index bound for an isolated umbilic
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point on a real analytic surface has been shown to restrict the number of zeros inside the
unit circle for a polynomial with self-inversive second derivative [29]. This and related
issues are discussed in more detail in Section 4.

The reason codimension two has a special significance in four dimensional topology
is briefly discussed and the final section considers topological obstructions to neutral
metrics as applied to closed 4-manifolds. In the case where the 4-manifold is compact
with boundary, many open questions remain about what geometric information from a
neutral metric can be seen at the boundary. Whether for a neutral 4-manifold with null
boundary, coming full circle, it is possible to X-ray the inside and explore its topology.

2. The Geometry of Neutral Metrics

This section discusses the geometry of metrics of indefinite signature (++−−). While
the study of positive definite metrics and Lorentz metrics are very well-developed, the
neutral signature case is less well understood, even in dimension four. Rather than
the general theory, of which [13] is a good survey, the section will focus on spaces of
geodesics and the invariant neutral structures associated with them.

2.1. The Space of Oriented Lines. The space L of oriented lines (or rays) of Eu-
clidean R3 can be identified with the set of tangent vectors of S2 by noting that

L = {~U, ~V ∈ R3 | |~U | = 1 and ~U · ~V = 0 } = TS2, (2)

where ~U is the direction vector of the line and ~V the perpendicular distance vector
to the origin.

Topologically, L is a non-compact simply connected 4-manifold which can be viewed
as the two dimensional vector bundle over S2 with Euler number two. One can see
the Euler number by taking the zero section, which is the 2-sphere of oriented lines
through the origin and perturbing it to another sphere of oriented lines (the oriented
lines through a nearby point, for example). The two spheres are easily seen to intersect
in two oriented lines, hence the Euler number of the bundle is two.

This space comes with a natural projection map π : L → S2 which takes an oriented

line to its unit direction vector ~U . In fact, there is a wealth of canonical geometric
structures on L, where canonical means invariant under the Euclidean group. These
include a neutral Kähler structure, a fibre metric and an almost paracomplex structure.
All three have a role to play in what follows and so we take some time to describe them
in detail.

To start with the Kähler metric on L, one has

Theorem 1. [36] The space L of oriented lines of R3 admits a metric G that is invariant
under the Euclidean group acting on lines. The metric is of neutral signature (++−−),
is conformally flat and scalar flat, but not Einstein.

It can be supplemented by a complex structure J0 and symplectic structure ω, so that
(L,G, J0, ω) is a neutral Kähler 4-manifold.

Here the complex structure J0 is defined at a point γ ∈ L by rotation through 90o

about the oriented line γ. This structure was considered in a modern context first by
Nigel Hitchin [42], who dated it back at least to Karl Weierstrass in 1866 [73].

The symplectic structure ω is by definition a non-degenerate closed 2-form on L =
TS2, and it can be obtained by pulling back the canonical symplectic structure on the
cotangent bundle T ∗S2 by the round metric on S2.

These two structures are invariant under Euclidean motions acting on line space
and fit nicely together in the sense that ω(J ·, J ·) = ω(·, ·). The metric obtained by
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their composition G(·, ·) = ω(J ·, ·), is of neutral signature (+ + −−), however. The
existence of a Euclidean invariant metric of this signature on line space was first noted
by Eduard Study in 1891 [68], but its neutral Kähler nature wasn’t discovered until
2005 [36]. Interestingly, the space of oriented lines in Euclidean Rn admits an invariant
metric iff n = 3, and in this dimension it is pretty much unique [64]. This accident of
low dimensions offers an alternative geometric framework to investigate the semi-direct
nature of the Euclidean group in dimension three, one which expresses three dimensional
Euclidean quantities in terms of neutral geometric quantities in four dimensions.

This is but one of the many accidents that arise in the classification of invari-
ant symplectic structures, (para)complex structures, pseudo-Riemannian metrics and
(para)Kähler structures on the space of oriented geodesics of a simply connected pseudo-
Riemannian space of constant curvature or a rank one Riemannian symmetric space [1].

Returning to oriented line space, the neutral metric G at a point γ ∈ L can be
interpreted as the angular velocity of any line near γ. If the angular velocity is zero -
and hence the oriented lines are null-separated - then the lines either intersect or are
parallel. One can adopt the projective view, which arises quite naturally, that parallel
lines intersect at infinity, and then nullity of a curve with respect to the neutral metric
implies the intersection of the underlying infinitesimal lines in R3. Nullity for higher
dimensional submanifolds will be discussed in the next section.

The invariant neutral metric is not flat, although its scalar curvature is zero and its
conformal curvature vanishes. The non-zero Ricci tensor has zero neutral length, but its
interpretation in terms of a recognisable energy momentum tensor is lacking. Given the
difference of signature to Lorentz spacetime, it is also difficult to see the usual physical
connection as in general relativity.

Since the metric is conformally flat, there exist local coordinates (X1, X2, X3, X4)
and a strictly positive function Ω so that it can be written as

ds2 = Ω2(dX2
1 + dX2

2 − dX2
3 − dX2

4 ). (3)

Such a metric has zero scalar curvature iff Ω satisfies the ultrahyperbolic equation,
thus characterising a Yamabe-type problem for neutral metrics [50]. Such coordinates
(X1, X2, X3, X4) were first constructed using the Plücker embedding on the space of
lines by John [46], who showed that the compatibility condition for a function on line
space to be the integral of a function on R3 is exactly the flat ultrahyperbolic equation
in these coordinates.

Write R2,2 for R4 endowed with the flat neutral metric. In Section 3 the ultrahyper-
bolic equation will be considered in more detail and an explicit formula presented for
data prescribed on a certain null hypersurface.

A peculiarity of neutral signature metrics in dimension four is the existence of 2-
planes on which the induced metric is identically zero, so-called totally null 2-planes.
In R2,2 there are a disjoint union of two S1’s worth of totally null 2-planes, termed
α−planes and β−planes.

One way to see these is to consider the null cone C0 at the origin. This is a cone over
the 2-torus S1 × S1 given by

X2
1 +X2

2 −X2
3 −X2

4 = 0.

An α−plane is a cone over a diagonal in the torus t 7→ (X1 + iX2, X3 + iX4) =

(eit, ei(t+t0)), while a β−plane is a cone over an anti-diagonal in the torus t 7→ (X1 +

iX2, X3 + iX4) = (eit, e−i(t+t0)).
This null structure exists in the tangent space at a point in any neutral four manifold

and if one can piece it together in a geometric way there can be global topological
consequences. One natural question is whether the α−planes or β−plane fields are
integrable in the sense of Frobenius, thus having surfaces to which the plane fields are
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tangent. These are guaranteed for the invariant neutral metrics endowed on the space
of oriented geodesics of any 3-dimensional space-form, as they are all conformally flat
[15].

Roughly speaking, an α−surface in a geodesic space is the set of oriented geodesics
through a fixed point, while β−surfaces are the oriented geodesics contained in a fixed
totally geodesic surface in the ambient 3-manifold. Thus a neutral metric on a geodesic
space allows for the geometrization of both intersection and containment.

Restricting our attention to R3, the α−planes in L are the oriented lines through
a point or the oriented lines with the same fixed direction. The latter are the 2-
dimensional fibres of the canonical projection π : L → S2 taking an oriented line to its
direction.

The distance between parallel lines in R3 induces a fibre metric on π−1(p) for p ∈
S2. If ξ is a complex coordinates about the North pole of S2 given by stereographic
projection and η the complex fibre coordinate in the projection TS2 → S2, then the
fibre metric has the form

ds̃2 =
4dη dη̄

(1 + ξξ̄)2
. (4)

In Section 3.3 this arises in the X-ray transform from certain null data.
Note that the complex coordinates (ξ, η) on L are essentially the vectors U and V in

definition (2), the direction and perpendicular distance to the origin. They are related
to John’s conformal flat coordinates (X1, X2, X3, X4) by

Proposition 2. [8] For complex coordinates (ξ, η) on TS2, over the upper hemisphere
|ξ|2 < 1 the conformal coordinates (X1, X2, X3, X4) are

X1 + iX2 =
2

1− ξ2ξ̄2
(
η + ξ2η̄ − i(1 + ξξ̄)ξ

)

X3 + iX4 =
2

1− ξ2ξ̄2
(
η + ξ2η̄ + i(1 + ξξ̄)ξ

)
.

We turn now to null 3-manifolds (or hypersurfaces) in a neutral 4-manifold. An
example of such is the null cone of a point in L. Fix any oriented line γ0 ∈ L and define
its null cone to be

C0(γ0) = {γ ∈ L | Q(γ0, γ) = 0},
where Q is the neutral distance function introduced by John [46]. For convenience intro-
duce the complex conformal coordinates given in terms of the real conformal coordinates
of equation (3) by

Z1 = X1 + iX2 Z2 = X3 + iX4.

If two oriented lines γ, γ̃ have complex conformal coordinates (Z1, Z2) and (Z̃1, Z̃2) then
the neutral distance function is

Q(γ, γ̃) = |Z1 − Z̃1|2 − |Z2 − Z̃2|2.
Two oriented lines have zero neutral distance iff either they are parallel or they intersect.
The null cone arises in the formula for the ultrahyperbolic equation in Theorem 13.

More generally, null hypersurfaces in L can be understood as 3-parameter families
of oriented lines in R3 as follows. The degenerate hyperbolic metric induced on a null
hypersurface H at a point γ defines a pair of totally null planes intersecting on the null
normal of the hypersurface in TγH, one an α−plane, one a β−plane. These plane fields
can be integrable or contact, as explored in [20].

There is a unique α−surface in L containing γ with tangent plane agreeing with
the α−plane at γ. Such a holomorphic Lagrangian surface is either the oriented lines
through a point, or the oriented lines in a fixed direction. This is the neutral metric
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interpretation of the classical surface statement that a totally umbilic surface is either
a sphere or a plane.

Thus, the α−plane at γ ∈ L identifies a point on each γ ⊂ R3 (albeit at infinity)
which is the centre of the associated α−surface. The locus of all these centres in R3 as
one varies overH will be called the focal set of the null hypersurface. A null hypersurface
is said to be regular if the focal set is a submanifold of R3.

Proposition 3. A regular null hypersurface Hn with focal set of dimension n must be
one of the following:

H0: The set of oriented lines parallel to a fixed plane,
H1: The set of oriented lines through a fixed curve,
H2: The set of oriented lines tangent to a fixed surface.

Assuming the fixed curve and fixed surface are convex, we have H0 = H2 = S1 ×R2

and H1 = S2 × R. The null cone of a point γ ∈ L is clearly an example of null
hypersurface H1, the fixed curve being the line γ ⊂ R3.

On the other hand, the formula presented in Section 3.3 assumes data on a null
hypersurface H0. Both the α− and β−planes in H0 are integrable, so it can be foliated
by α−surfaces (all the oriented lines in a fixed direction) and by β−surfaces (all oriented
lines contained in a plane parallel to the fixed plane).

The α-foliation underpins the projection operator in the formula and it is not clear
how the formula would look for data on null hypersurfaces of type H1 or H2, as the
α−planes are not in general integrable.

Lines tangent to a surface

Lines through a curve

Lines parallel to a plane

Figure 1. Regular null hypersurfaces in oriented line space

In Figure 1 the three types of regular null hypersurfaces H0,H1,H2 are shown. The
left null hypersurface is H0, the standard configuration for acquiring data in CT scans,
and is discussed in Section 3.3.

Reconstruction using either of the other two null hypersurfaces would have advantages
if one seeks to reduce the amount of radiation exposure during the scan. In particular,
using the oriented lines H1 through a fixed line would reduce the exposure of each
point to a semi-circle of radiation rather than the full circle in the H0. On the other
hand, using the oriented lines H2 tangent to a convex surface would leave the interior
occluded, and hence shielded completely from radiation. Whether either of these two
configurations can be practically acquired by a physical scanner is another matter.

2.2. Paracomplex Structures. The complex structure J0 on the space of oriented
geodesics of a 3-dimensional space form evaluated at an oriented geodesic is obtained
by rotation through 90o about the geodesic. This almost complex structure is integrable
in the sense of Nijinhuis, which for any almost complex structure J says

Nk
ij = Jm

j ∂mJk
i − Jm

i ∂mJk
j + Jk

m(∂iJ
m
j − ∂jJ

m
i ) = 0,
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and thus a complex structure. This is due to the fact that the ambient space has
constant curvature [42].

One can also take reflection of an oriented line in a fixed oriented line γ ∈ L to gener-
ate a map J1 : TγL → TγL such that J2

1 = 1 and the ±1−eigenspaces are 2-dimensional.
This almost paracomplex structure is not integrable in the sense of Nijinhuis and thus
not a paracomplex structure. It is however anti-isometric with respect to the canonical
neutral metric G:

G(J1·, J1·) = −G(·, ·).

Theorem 4. [19] The space of oriented lines of Euclidean 3-space admits an invariant
commuting triple (J0, J1, J2) of a complex structure, an almost paracomplex structure
and an almost complex structure, respectively, satisfying J2 = J0J1. The complex struc-
ture J0 is isometric, while J1 and J2 are anti-isometric. Only J0 is parallel w.r.t. G,
and only J0 is integrable.

Composing the neutral metric G with the (para)complex structures J0, J1, J2 yields

closed 2-forms Ω0 and Ω1, and a conformally flat, scalar flat, neutral metric G̃, respec-
tively. The neutral 4-manifolds (L,G) and (L, G̃) are isometric. Only J0 is parallel

w.r.t. G̃.

An almost paracomplex structure is an example of an almost product structure, in
which a splitting of the tangent space at each point of the manifold is given, in this
case 4 = 2 + 2. Such pointwise splittings can only be extended over a manifold subject
to certain geometric and topological conditions. For example

Theorem 5. [19] A conformally flat neutral metric on a 4-manifold that admits a par-
allel anti-isometric or isometric almost paracomplex structure has zero scalar curvature.

The parallel condition for an isometric almost paracomplex structure can be expressed
in terms of the first order invariants of the eigenplane distributions:

Theorem 6. [19] Let j be an isometric almost paracomplex structure on a pseudo-
Riemannian 4-manifold. Then j is parallel iff the eigenplane distributions are tangent
to a pair of mutually orthogonal foliations by totally geodesic surfaces.

Canonical examples for neutral conformally flat metrics are the indefinite product of
two surfaces of equal constant Gauss curvature, which have exactly this double foliation.
It is instructive in this case to use the isometric paracomplex structure j = I ⊕ −I to
flip the sign of the product metric. The result is a Riemannian metric which turns out
to be Einstein. This construction holds more generally:

Theorem 7. [19] Let (M, g) be a Riemannian 4-manifold endowed with a parallel iso-
metric paracomplex structure j, and let the associated neutral metric be g′(·, ·) = g(j·, ·).
Then, g′ is locally conformally flat if and only if g is Einstein.

This transformation will be used in Section 4.3 to find global topological obstructions
to parallel isometric paracomplex structures.

2.3. The Space of Oriented Geodesics of Hyperbolic 3-Space. In this section
we consider the space L(H3) of oriented geodesics in three dimensional hyperbolic space
H3 of constant sectional curvature −1. The canonical neutral metric on this space has
been considered in detail [22] [23] [65], but its relation to the ultrahyperbolic equation
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has not. To illustrate the ideas of this paper, and explore the commonality with the
flat case, proofs are provided in this section.

The space L(H3) of oriented geodesics in hyperbolic 3-space is diffeomorphic to that
of oriented lines L(R3) in Euclidean 3-space L(H3) = L(R3) = TS2, but the projection
map does not have the same geometric significance. In fact each oriented geodesic has
two Gauss maps (the beginning and end directions at the boundary of the ball model
for H3) and there is a natural embedding into S2×S2. Thus it is natural to view L(H3)
as S2 × S2 with the diagonal removed or, more geometrically, the reflected diagonal
removed [23].

The canonical neutral metric G̃ on L(H3) is conformally flat and scalar flat, thus
relating the solutions of the flat ultrahyperbolic equation with harmonic functions, as
in the case of L(R3).

Theorem 8. For any compactly supported or asymptotically constant function f on
hyperbolic 3-space, its X-ray transform is harmonic with respect to the canonical neutral
metric:

△G̃uf = 0,

where △G̃ is the Laplacian of G̃.

Proof. Consider the upper half-space model of hyperbolic 3-spaceH3, that is (x1, x2, x3) ∈
R3, x3 ∈ R>0 with metric

ds2 =
dx21 + dx22 + dx23

x23
.

We can locally model the space of oriented geodesics in this model by (ξ, η) ∈ C2

where the unit parameterised geodesic is [23]

z = x1 + ix2 = η +
tanh r

ξ̄
x3 =

1

|ξ| cosh r . (5)

With respect to these coordinates the neutral metric is

ds2 = − i

4

(
1

ξ2
dξ2 − 1

ξ̄2
dξ̄2 + ξ̄2dη2 − ξ2dη̄2

)
,

and the Laplacian is

△G̃u = 8Im

(
1

ξ̄2
∂2
ηu+ ∂ξ(ξ

2∂ξu)

)
.

Note that
∂

∂r
=

1

cosh2 r

(
1

ξ̄

∂

∂z
+

1

ξ

∂

∂z̄
− sinh r

|ξ|
∂

∂t

)
.

Now a straight-forward calculation establishes the following identity

△G̃uf = 4i

∫ ∞

−∞

∂

∂r

(
1

ξ̄
∂zf − 1

ξ
∂z̄f

)
dr = 4i

[
1

ξ̄
∂zf − 1

ξ
∂z̄f

]∞

−∞

.

Thus, by integration by parts, as long as the transverse gradient of f falls off at the
boundary faster than |ξ|, the boundary terms vanish and we get

△G̃uf = 0.

�

In Section 3.1 unit (pseudo-)circles in flat planes are proven to be the domains of
integration of a mean value theorem for solutions of the ultrahyperbolic equation and to
generate doubly ruled surfaces in the underlying R3. We now present a local conformally
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flat coordinate system for L(H3) using the hyperboloid model of hyperbolic 3-space H3,
which lets one explicitly construct such doubly ruled surfaces in H3.

In the hyperboloid model in Minkowski space R3+1, H3 is the hyperboloid x20 − x21 −
x22 − x23 = 1 and the oriented geodesics are the intersections with oriented planes of
Lorentz signature through the origin in R3+1.

An oriented geodesic in H3 in the ball model can be uniquely determined by the
directions at the boundary (µ1, µ2) ∈ S2 × S2. These directions (µ1, µ2) are exactly the
null directions on the Lorentz plane.

The relationships between the complex coordinates (µ1, µ2) ∈ C2 obtained by stere-
ographic projection on each S2 factor and the complex coordinates (ξ, η) introduced in
Theorem 8 is

ξ = 1
2

(
µ̄1 +

1
µ2

)−1
η = 1

2

(
−µ1 +

1
µ̄2

)
.

Proposition 9. If (µ1, µ2) are the standard holomorphic coordinates on L(H3), consider
the complex combination

Z1 =
(1 + µ2µ̄2)µ̄1 + (1 + µ1µ̄1)µ̄2 + i[(1− µ2µ̄2)µ̄1 − (1− µ1µ̄1)µ̄2]

1− µ1µ̄1µ2µ̄2

Z2 =
(1 + µ2µ̄2)µ̄1 + (1 + µ1µ̄1)µ̄2 − i[(1− µ2µ̄2)µ̄1 − (1− µ1µ̄1)µ̄2]

1− µ1µ̄1µ2µ̄2
.

The flat neutral metric ds2 = dZ1dZ̄1−dZ2dZ̄2 pulled back by the above is equal to Ω2G̃
where

Ω =
|1 + µ1µ̄2|2
1− |µ1|2|µ2|2

.

The inverse mapping from (µ1, µ2) to (Z1, Z2) is given by

µ1 =
1
2(Ā+B̄)− Ā− B̄

2|A−B|2
(
|A|2 − |B|2 + 2−

√
(|A|2 − |B|2 + 2)2 − |A−B|2|A+B|2

)

(6)

µ2 =
1
2(Ā−B̄)− (Ā+ B̄)

2|A+B|2
(
|A|2 − |B|2 + 2−

√
(|A|2 − |B|2 + 2)2 − |A−B|2|A+B|2

)

(7)
where A = 1

2(Z1 + Z2) and B = 1
2i(Z1 − Z2).

Proof. A direct calculation. �

In Section 3.2 these transformations will be used to construct surfaces in H3 that are
ruled by geodesics in two distinct ways - doubly ruled surfaces.

3. The Ultrahyperbolic Equation

In this section solutions of the ultrahyperbolic equation (1) are studied. A mean
value property for such solutions is presented along with its interpretation in terms
of doubly ruled surfaces in R3. Classically it was known that a non-flat doubly ruled
surface in R3 is either a one-sheeted hyperboloid or a hyperbolic paraboloid [40]. The
construction of doubly ruled surfaces is extended to hyperbolic 3-space and the analogue
of the 1-sheeted hyperboloid is exhibited. An explicit geometric formula is then given
for the ultrahyperbolic equation with data given on a certain null hypersurface.
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3.1. Mean Value Theorem. The X-ray transform takes a function f : R3 → R to
uf : L → R by integrating over lines. In 1937 Fritz John showed that if a function
f satisfies certain fall-off conditions at infinity (which hold for compactly supported
functions), then uf satisfies the ultrahyperbolic equation (1), [46].

The link between the ultrahyperbolic equation (1) and the neutral metric is

Theorem 10. [8] Let u : R2,2 → R and v : L → R be related by v = Ω−1u, where Ω is
the conformal factor.

Then u is a solution of the ultrahyperbolic equation (1) iff v is in the kernel of the
Laplacian of the neutral metric: ∆Gv = 0.

Leifur Asgeirsson [2] had earlier shown that solutions of the ultrahyperbolic equation
satisfy a mean value property. In particular, for u : R2,2 → R a solution of equation (1)
satisfies

∫ 2π

0
u(a+ r cos θ, b+ r sin θ, c, d) dθ =

∫ 2π

0
u(a, b, c+ r cos θ, d+ r sin θ) dθ, (8)

for all a, b, c, d ∈ R and r > 0. The two domains of integration are circles of equal radius
lying in a pair of orthogonal planes π, π⊥ in R2,2 with definite induced metrics on them.

It can be shown that the mean value theorem holds over a much larger class of curves,
namely the image of these circles under any conformal map of R2,2. We refer to such
curves as conjugate conics and these turn out to be pairs of circles, hyperbolae and
parabolae lying in orthogonal planes of various signatures:

Theorem 11. [8] [9] Let S and S⊥ be curves contained in orthogonal affine planes π
and π⊥ in R2,2, respectively, which are one of the following pairs:

(1) Circles with equal and opposite radii ±r0 when the two planes are definite,
(2) Hyperbolae with equal and opposite radii ±r0 when the two planes are indefinite,
(3) Parabolae in non-intersecting degenerate affine planes determined by the prop-

erty that every point on S ⊂ π is null separated from every point on S⊥ ⊂ π⊥.

Then the following mean value property holds for any solution u of the ultrahyperbolic
equation: ∫

S
u dl =

∫

S⊥

u dl,

where dl is the line element induced on the curves by the flat metric g.

One can view this as a conformal extension of the original mean value theorem, one
that intertwines the classical conic sections, the ultrahyperbolic equation and neutral
geometry.

3.2. Doubly Ruled Surfaces. John also pointed out the relationship between the two
circles in Asgeirsson’s theorem and the double ruling of the hyperboloid of 1 sheet [46].
In fact, conjugate conics have been shown to correspond to the pairs of families of lines
of all non-planar doubly ruled surfaces in R3.

Theorem 12. [9] Let S, S⊥ be two curves in R2,2 representing the two one-parameter
families of lines L,L⊥ in R3. Then S, S⊥ are a pair of conjugate conics in R2,2 if and
only if L and L⊥ are the two families of generating lines of a non-planar doubly ruled
surface in 3-space.
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Figure 2. Halfspace
model

Figure 3. Ball model

The geometric reason these curves yield a doubly ruled surface is that every point on
one curve is zero distance from every point on the other curve - this follows from the
neutral Pythagoras Theorem! But, as mentioned earlier, zero distance between oriented
lines implies intersection, we see that every line of one ruled surface intersects every
line of the other ruling, hence the double ruling.

While this result was originally proven in R3, it holds in any 3-dimensional space
of constant curvature, where the canonical neutral Kähler metric plays the same role.
To demonstrate this, let us construct doubly ruled surfaces in 3-dimensional hyperbolic
space H3.

Recall the conformal coordinates for L(H3) given in equations (6) and (7). To gen-
erate the hyperbolic equivalent of the 1-sheeted hyperboloid, the two curves (parame-
terized by u) are circles of radii ±r0 in two definite planes:

Z1 = r0e
iu Z2 = 0,

and

Z1 = 0 Z2 = r0e
iu.

For the curves we can view the doubly ruled surfaces in either the upper half-space
model or the ball model of H3. For the former, one uses the equations (5), while for
the latter one can use

x1 + ix2 =
µ2(1 + µ1µ̄1)e

v − µ1(1 + µ2µ̄2)e
−v

(1 + µ1µ̄1)(1 + µ2µ̄2) cosh v + [(1 + µ1µ̄2)(1 + µ2µ̄1)(1 + µ1µ̄1)(1 + µ2µ̄2)]
1
2

x3 =
(1 + µ1µ̄1)(1− µ2µ̄2)e

v − (1 + µ2µ̄2)(1− µ1µ̄1)e
−v

2
(
(1 + µ1µ̄1)(1 + µ2µ̄2) cosh v + [(1 + µ1µ̄2)(1 + µ2µ̄1)(1 + µ1µ̄1)(1 + µ2µ̄2)]

1
2

) .

Figure 1 is a plot of a doubly ruled surface in the upper half-space model while Figure
2 is in the ball model of hyperbolic 3-space. These are the hyperbolic equivalent of the
1-sheeted hyperboloid, although they satisfy a fourth order (rather than second order)
polynomial equation.

3.3. Cauchy Problem for the Ultrahyperbolic Equation. One way to reconcile
the difference between the dimension of L(R3) and that of R3 is to consider the problem
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of determining the value of a solution v : L → R of the Laplace equation

△Gv = 0,

on all of oriented line space L, given only the values of the function on a null hypersurface
H ⊂ L.

Consider the case where the data is known on the hypersurface generated by all
oriented lines parallel to a fixed plane in P0 ⊂ R3 - the case of regular dimension zero
focal set H0 in Proposition 3.

This null hypersurface is suitable as a boundary for the Cauchy problem, as proven by
John [46]. In fact, it can be foliated both by α−planes and β−planes - the former being
the oriented lines parallel to P0 in a fixed direction, while the latter are all oriented
lines parallel to P0 at a fixed height.

Denote
H = {γ ∈ L | γ ‖ P0 }.

Clearly H = S1 × C and for convenience, suppose that P0 is horizontal in standard
coordinates, so that in complex coordinates the hypersurface is ξ = eiθ, since the only
restriction on the oriented line is that its direction lies along the equator.

The distance between parallel lines in R3 induces the metric (4) and associated
distance function ‖.‖. In fact, there is an invariant metric on H with volume form
d3V ol = dη dη̄ dθ.

Suppose that γ0 /∈ H and consider the intersection of this null hypersurface with
the null cone C0(γ0) ∩ H = S1 × R. This surface intersects each fibre in an affine line.
Let Pr0(γ) be the projection of γ onto this affine line with respect to the fibre metric:
Pr0 : S1 × R2 → S1 × R.

We now prove the following explicit geometric formula that determines the value of a
solution of the ultrahyperbolic equation from its value on the null hypersurface of type
H0 in L:

Theorem 13. If v : L → R is a function satisfying the ultrahyperbolic equation, then
at an oriented line γ0

v(γ0) = − 1
2π2

∫∫∫

γ∈H

v(γ)− v(Pr0(γ))

‖γ − Pr0(γ)‖2
d3V ol,

where Pr0(γ) is projection onto the intersection of the null cone of γ0 with the α-plane
through γ that lies in the null hypersurface H.

Proof. Our starting point is Fritz John’s formula (equation (13) of [46]) which gives the
solution of the ultrahyperbolic equation at an oriented line γ0 by the cylindrical average
over all planes parallel to γ0:

v(γ0) = − 1
π

∫ ∞

0

F (R)− F (0)

R2
dR, (9)

where

F (R) = 1
2π

∫ 2π

0

∫∫

P(R,α)

ρ(r, s)drds dα,

P(R,α) is the plane parallel to γ0 at a distance R and angle α, and (r, s) are flat coordi-
nates on that plane.

Consider the map

z =
1

1 + νν̄

(
2νR+ (eiA − ν2e−iA)r + i(eiA + ν2e−iA)s

)
(10)

x3 =
1

1 + νν̄

(
(1− νν̄)R− (ν̄eiA + νe−iA)r − i(ν̄eiA − νe−iA)s

)
. (11)
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For fixed R ∈ R, ν ∈ C and A ∈ [0, 2π), the map (r, s) 7→ (z(r, s), x3(r, s)) ∈ R3

paramaterizes the plane a distance R from the origin with normal direction ν. Changing
A rotates the r- and s-axes in the plane.

By a translation we can assume γ0 contains the origin and so has complex coordinates
(ξ = ξ0, η = 0). Let us restrict attention to planes that are parallel γ0. Thus the normal
direction of P(R,ν) is perpendicular to the direction of γ0, we have

ν =
ξ0 + eiα

1− ξ̄0eiα
,

where α ∈ [0, 2π).
The quantity R is then just the distance from the plane to the line γ0. Finally we

want to rotate the ruling by s on the plane so that it is horizontal and thus a curve in
H. Clearly this is achieved by

ν = r0e
iA,

or more explicitly

A = 1
2i ln

[
(ξ0 + eiα)(1− ξ0e

−iα)

(ξ̄0 + e−iα)(1− ξ̄0eiα)

]
r0 =

[
(ξ0 + eiα)(ξ̄0 + e−iα)

(1− ξ0e−iα)(1− ξ̄0eiα)

] 1
2

.

The first of these is invertible for fixed ξ0, A ↔ α.
The horizontal ruling for P(A,α) is

z =
2ν

1 + νν̄
R+

1− νν̄

1 + νν̄
reiA + iseiA

x3 =
1− νν̄

1 + νν̄
R− 2|ν|

1 + νν̄
r.

The direction of the ruling is

∂

∂s
= ieiA

∂

∂z
− ie−iA ∂

∂z̄

so that the complex coordinates are ξ = ieiA and

η = 1
2(z − 2x3ξ − z̄ξ2) = −(r − iR)

(
r0 − i

r0 + i

)
eiA.

Thus we have parameterized H by coordinates (R,α, r) and a straightforward calcula-
tion shows that the fibre metric is simply

dηdη̄ = dR2 + dr2 and d3V ol = drdRdα.

The null cone of γ0 consists of all lines that either intersect or are parallel to it. For
non-horizontal γ0 the null cone intersects the null hypersurface H at the lines that
intersect γ0, namely those with coordinates (R = 0, α, r) which is a line through the
origin in each fibre. We have chosen γ0 to contain the origin in R3, which is why the
line in the fibre is through the origin. More generally the intersection of the null cone
with a fibre is an affine line (not necessarily through the origin), as claimed.

Thus the fibre projection is simply Pr0(R,α, r) = (0, α, r) and

R = ‖γ − Pr0(γ)‖.
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Now putting this together with the integral formula

v(γ0) =− 1
2π2

∫ ∞

0

∫ 2π

0

1

R2

[∫∫

P(R,α)

ρ(r, s)drds−
∫∫

P(0,α)

ρ(r, s)drds

]
dRdα

=− 1
2π2

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

v(R,α, r)− v(0, α, r)

R2
drdRdα

=− 1
2π2

∫∫∫

γ∈H

v(γ)− v(Pr0(γ))

‖γ − Pr0(γ)‖2
d3V ol,

as claimed. �

4. Topological Considerations

In this section global topological aspects of neutral metrics and almost product struc-
tures are explored. These include the relationship between umbilic points on surfaces in
R3 and complex points on Lagrangian surfaces in L, and an associated boundary value
problem for the Cauchy-Riemann operator. The significance of these constructions for
a number of conjectures from classical surface theory is indicated.

Some background on the problems of 4-manifold topology are discussed with partic-
ular attention to codimension two. The significance of neutral metrics to these issues is
that they are uniquely capable of quantifying codimension two topological phenomena,
and thus can be used as geometric tools to resolve certain long-standing questions. For
the case of closed 4-manifolds, we end with a discussion of topological obstructions that
arise to certain neutral geometric structures.

4.1. Global Results. Topological aspects of neutral metrics become evident in the
identification of complex points on Lagrangian surfaces in L with umbilic points on
surfaces in R3 [37].

The Lagrangian surface Σ ⊂ |mathbbL is formed by the oriented normal lines to the
surface S ⊂ R3 and the index i(p) ∈ Z/2 of an isolated umbilic point p ∈ S on a convex
surface is exactly one half of the complex index of the corresponding complex point
γ ∈ Σ: I(γ) = 2i(p) ∈ Z. Thus problems of classical surface theory can be explored
through studying Lagrangian surfaces in the four dimensional space of oriented lines L
with its neutral metric G.

The metric induced on a Lagrangian surface is Lorentz or degenerate - the degenerate
points being the umbilic points of S and the null cone at γ being the principal directions
of S at p. The indices of isolated umbilic points carry geometric information from the
neutral metric and vice versa.

If an isolated umbilic point p has half-integer index then the principal foliation around
p is non-orientable - it defines a line field rather than a vector field about the umbilic
point. The foliation is orientable if the index is an integer. The following theorem
establishes a topological version of a result of Ferdinand Joachimsthal [45] for surfaces
intersecting at a constant angle:

Theorem 14. [33] If S1 and S2 are smooth convex surfaces intersecting with constant
angle along a curve that is not umbilic in either S1 or S2, then the principal foliations
of the two surfaces along the curve are either both orientable, or both non-orientable.

That is, if i1 ∈ Z/2 is the sum of the umbilic indices inside the curve of intersection
on S1 and i2 ∈ Z/2 is the sum of the umbilic indices inside the curve of intersection on
S2 then

2i1 = 2i2 mod 2.
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Pushing deeper, if one considers the problem of finding a holomorphic disc in L whose
boundary lies on a given Lagrangian surface Σ, one encounters a classical problem of
Riemann-Hilbert for the Cauchy-Riemann operator. Given a totally real surface Σ in
a complex surface M, the Riemann-Hilbert problem seeks a map f : (D, ∂D) → (M,Σ)
which is holomorphic: it lies in the kernel of the Cauchy-Riemann operator ∂̄f = 0. For
this to be an elliptic boundary value problem it is required that the boundary surface Σ
be totally real i.e. has no complex points. In the Riemannian case Lagrangian implies
totally real, and so Lagrangian boundary conditions are often used when the ambient
metric is Riemannian.

In our case, due to the neutral signature of the metric formed by the composition of
the symplectic structure (which defines Lagrangian) and the complex structure (which
defines holomorphic), new features arise. In particular, Lagrangian surfaces may not be
totally real, and therefore at complex points they are not suitable as a boundary con-
dition for the ∂̄-operator. If, however, the boundary surface is assumed to be spacelike
with respect to the metric, then by the neutral Wirtinger identity it is also totally real
and is suitable.

The deformation from Lagrangian to spacelike by the addition of a holomorphic
twist can be achieved over an open hemisphere. This contactification of the problem
throws away the surface S in R3, as the perturbed spacelike surface Σ̃ in L(R3) forms
a 2-parameter family of twisting oriented lines in R3 that are not orthogonal to any
surface. Any holomorphic disc with boundary lying on Σ̃ yields a holomorphic disc
with boundary lying on Σ by subtracting the holomorphic twist and so the problems
are equivalent over a hemisphere.

The Riemann-Hilbert problem then follows the standard case, with the linearisation
at a solution defining an elliptic boundary value problem with analytic index I given
by

I = Dim Ker ∂̄ −Dim Coker ∂̄.

The analytic index for the problem is well-known to be related to the Keller-Maslov
index µ(∂D,Σ) along the boundary by

I = µ+ 2.

The Keller-Maslov index in the case of a section of L is given by the sum i of the umbilic
indices inside the curve ∂D in the boundary Σ, as viewed in R3 [37]:

µ = 4i.

For the Keller-Maslov class to control the dimension of the space of holomorphic discs,
one needs the dimension of the cokernel to be zero. If the problem is Fredholm regular,
by a small perturbation the cokernel vanishes and the space of holomorphic discs is
indeed determined by the number of enclosed umbilic points.

Remarkably, the Riemann-Hilbert problem associated with a convex sphere contain-
ing a single umbilic point is Fredholm regular:

Theorem 15. [30] Let Σ ⊂ L be a Lagrangian sphere with a single isolated complex
point. Then the Riemann-Hilbert problem with boundary Σ is Fredholm regular.

The reason behind this result is that the Euclidean isometry group acts holomorphi-
cally and symplectically on L, thus preserving the problem. The action is also transitive
and so fixing the single complex point one considers the equivariant problem, the result
being that it is Fredholm regular, as in the totally real case.

The non-existence of a convex sphere containing a single umbilic point is the famous
conjecture of Constantin Carathéodory, and Theorem 15 gives the reason the Conjecture
is true. Namely, were such a remarkable surface S to exist, the Riemann-Hilbert problem
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with boundary given by the normal lines Σ would be Fredholm regular and so have
the property that the dimension of the space of parameterised holomorphic discs with
boundary lying on it would be entirely determined by the number of umbilic points in
the interior on S.

I = Dim Ker ∂̄ = 4i+ 2 (12)

This property would also hold for a dense set of perturbations of S in an appropriate
function space. To show that such a surface S cannot exist, one can seek to find
violations of equation (12), in particular, a holomorphic disc which encloses a totally
real disc on the boundary Σ.

By equation (12), if the boundary encloses a totally real disc, then I = 2. However,
since the Möbius group acts on the space of parameterized holomorphic discs, the space
of unparameterized holomorphic discs is 2− 3 = −1. Thus, over an umbilic-free region
of the remarkable surface S it should be impossible to solve the ∂̄-problem.

The proof of the Carathéodory Conjecture in [35] follows from the existence of holo-
morphic discs with boundary enclosing umbilic-free regions, as established by evolving
to them using mean curvature flow of a spacelike surface in L, thus disproving equation
(12).

At this point in time two thirds of the proof given in [35] has appeared in print, with
the final part containing the boundary estimates for mean curvature flow currently
under review.

In fact, the interior estimates required to prove long time existence and convergence
hold for more general spacelike mean curvature flow with respect to indefinite metrics
satisfying certain curvature conditions [32].

The final step of the proof of the Conjecture is the establishment of boundary esti-
mates for mean curvature flow in L and sufficient control to show that the flow weakly
converges in an appropriate function space to a holomorphic disc. The boundary con-
ditions used for mean curvature flow (a second order system) include a constant angle
condition and an asymptotic holomorphicity condition.

The constant angle condition is defined between a pair of spacelike planes that inter-
sect along a line and is hyperbolic in nature. The asymptotic holomorphicity condition
ensures that the ultimate disc is holomorphic rather than just maximal.

The sizes of the constant hyperbolic angle and the added holomorphic twist are free
parameters in the evolution and can be used to control the flowing surface. If one views
it as a codimension two capillary problem, the effect of the parameter changes is to
increase the friction at the boundary, stopping it from skating off the hemisphere, thus
preserving strict parabolicity.

An analogous result in the rotationally symmetric case for mean curvature flow in
the space of oriented lines with Dirichlet and Neumann boundary conditions shows that
the evolving surface can be made to converge to a holomorphic disc - in this case to
a family of holomorphic discs called the Bishop family [6] - or to a maximal surface,
depending on the boundary condition imposed [28].

For the full flow one can then show that:

Theorem 16. [35] Let S be a C3+α smooth oriented convex surface in R3 without
umbilic points and suppose that the Gauss image of S contains a closed hemisphere.
Let Σ ⊂ L be the oriented normal lines of S forming a Lagrangian surface in the space
of oriented lines.

Then ∃f : D → L with f ∈ C1+α
loc (D) ∩ C0(D) satisfying

(i) f is holomorphic,
(ii) f(∂D) ⊂ Σ.
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This would conclude the proof of the Carathéodory Conjecture for C3+α smooth
surfaces.

The appearance of Gauss hemispheres here is noteworthy, for this meets with a
conjecture of Victor Toponogov that a complete convex plane must have an umbilic
point, albeit at infinity [71]. Toponogov showed that such planes have hemispheres as
Gauss image and established his conjecture under certain fall-off conditions at infinity.

In fact, the same reasoning as above that pits Fredholm regularity against mean
curvature flow proves the Toponogov Conjecture:

Theorem 17. [31] Every C3+α-smooth complete convex embedding of the plane P ,
satisfies infP |κ1 − κ2| = 0.

The proof follows from applying Theorem 16 in this case, while Fredholm regularity
is established easily, as a putative counter-example is by assumption totally real (even
at infinity).

Without the high degree of symmetry of the Euclidean group, one would not expect
Fredholm regularity to hold and this obstructs the generalisation of the Carathéodory
Conjecture to non-Euclidean ambient metrics. This turns out to be the case and the
delicate nature of the problem is revealed:

Theorem 18. [26] For all ǫ > 0, there exists a smooth Riemannian metric g on R3

and a smooth strictly convex 2-sphere S ⊂ R3 such that

(i) S has a single umbilic point,
(ii) ‖g − g0‖2 ≤ ǫ,

where ‖.‖ is the L2 norm on R3 with respect to the flat metric g0.

The proof here is constructive: the Euclidean metric is deformed while keeping the
standard round 2-sphere fixed (although not round in the deformed metric) and one
can essentially brush the principal foliation of the surface into any configuration one
chooses by changing the ambient geometry.

Finally, establishing the local index bound i(p) ≤ 1 for any isolated umbilic point p
has long been the preferred route to proving the Carathéodory Conjecture in the real
analytic case [38] [44]. The above methods can also be used to find a slightly weaker
local index bound for isolated umbilics on smooth surfaces:

Theorem 19. [34] The index of an isolated umbilic p on a C3,α surface in R3 satisfies
i(p) < 2.

The proof follows from the extension of Theorem 15 to surfaces of higher genus by
removing hyperbolic umbilic points and adding totally real cross-caps to the Lagrangian
section. The existence of holomorphic discs over open hemispheres again contradicts
Fredholm regularity and the local index bound follows.

Once again, the role of the Euclidean isometry group is paramount, and even a small
perturbation of the ambient metric means that the index bound does not hold.

Theorem 20. [26] For all ǫ > 0 and k ∈ Z/2, there exists a smooth Riemannian metric
g on R3 and a smooth embedded surface S ⊂ R3 such that

(i) S has an isolated umbilic point of index k,
(ii) ‖g − g0‖2 ≤ ǫ,

where ‖.‖ is the L2 norm on R3 with respect to the flat metric g0.
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Finally, the local umbilic index bound i(p) ≤ 1 of Hamburger [38] for real analytic
surfaces has recently been used to prove results on the zeros of certain holomorphic
polynomials. In particular, a polynomial whose zero set is invariant under inversion in
the unit circle is called self-inversive [7] [47] [57] [66] [72].

Theorem 21. [29] Let PN be a polynomial of degree N with self-inversive second deriv-
ative and suppose that none of the roots of PN lies on the unit circle. Then the number
of roots (counted with multiplicity) of PN inside the unit circle is less than or equal to
⌊N/2⌋+ 1.

This result is in the spirit of a converse to the Gauss-Lucas theorem [51] in which the
zeros of the first derivative of a polynomial are restricted by the zeros of the polynomial.
Here, however, by methods of differential geometry, the locations of the zeros of the
second derivative restrict the zeros of the polynomial - the first such application. It is
also worth noting that the result is sharp.

The method of proof is to take a polynomial with self-inversive second derivative and
to construct a real analytic strictly convex with an isolated umbilic point whose index
is determined by the number of zeros inside the unit circle.

4.2. Four Manifold Topology. The proof by Grigori Perelman of Thurston’s Ge-
ometrization Conjecture [59][60][61] naturally raises the question as to whether closed
4-dimensional manifolds can be geometrized in some way. The approach in three dimen-
sions, however, does not apply in higher dimensions and even basic things are harder.

For example, any finitely presented group can be the fundamental group of a smooth
closed 4-manifold, while the fundamental group of a prime 3-manifold must be a quotient
of the isometry group of one of the eight Thurston homogenous geometries [69], and so
it is clear that new geometric paradigms are required.

To make matters worse, while in three dimensions there is no distinction between
smooth, piecewise-linear and topological structures on closed manifolds, in higher di-
mension this may not be true. If one considers open manifolds, these problems are
compounded further. In each dimension n ≥ 3 there are uncountably many fake Rn’s -
open topological manifolds that are homotopy equivalent to, but not homeomorphic to
Rn [12][24][54]. While many of these involve infinite constructions, an example of Barry
Mazur in dimension four requires only the attachment of two thickened cells [53].

Four dimensions also has its share of peculiar problems that do not arise in higher
dimensions. In particular, the Whitney trick, in which closed loops are contracted to
a point across a given disc, plays a major role in many higher dimensional results, for
example Stephen Smale’s proof of the h-cobordism theorem [67]. The issue is that,
while in dimensions five and greater a generic 2-disc is embedded, in dimension four a
generic 2-disc is only immersed and will have self-intersections, making it unsuitable to
contract loops across.

Against this array of formidable difficulties, the Disc Theorem of Micheal Freedman
[16] utilizes a doubly infinite codimension two construction to claim that there is a
topological work-around for the Whitney trick. This result leads to the proof of the
topological Poincaré Conjecture in dimension four, as well as the classification of all sim-
ply connected closed topological 4-manifolds based almost entirely on their intersection
form in the second homology.

Contradictions with Donaldson’s ground-breaking work on smooth 4-manifolds [14]
lead to extraordinary families of exotic manifolds (homeomorphic but not diffeomorphic)
not seen in any other dimension. Since the work of John Milnor [55] it has been known
that exotic differentiable structures in dimensions seven and above exist, but only in
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finitely many families. According to the Disc Theorem exotic differentiable structures
in dimension four occur in uncountable families - indeed, no 4-manifold is known to
have only countably many distinct differentiable structures.

Both the original Disk Theorem [16] and subsequent attempts to complete it [3] [17]
[18] [27] [39] have depended upon the iterative attachment of 1- and 2-handles or there
generalizations, as one attempts to push unwanted codimension two intersections to
infinity. The ultimate homeomorphism that is sought is shown to exist using Bing
shrinking and what is called decomposition space theory [5].

One key aspect of these efforts is that they all involve codimension two constructions
- gluing in thickened 2-discs or more general surfaces into 4-manifolds. The work in this
survey involves geometric paradigms associated with neutral metrics which can gain
more control of these codimension two constructions.

Unlike Riemannian metrics which exist on all smooth manifolds, neutral metrics
see the topology of the underlying manifold and can be used to express topological
invariants. The next section considers closed 4-manifolds and illustrates the manner in
which the existence of certain neutral metrics restricts the topology of the underlying
4-manifold. These are modest steps in the direction of understanding a tiny part of the
wild world of 4-manifolds in which there is a splitting 4 = 2 + 2.

4.3. Closed Neutral 4-manifolds. The simplest topological invariant of a closed 4-
manifold M is its Euler number χ(M). Let Hn(M,R) be the nth homology group of
M with real coefficients and bn be the associated Betti numbers n = 0, 1, ..., 4. For a
closed connected 4-manifold we have b0 = b4 = 1, and b3 = b1 by Poincaré duality and
the Euler number is defined

χ(M) =
4∑

n=0

(−1)n dim Hn(M,R) = 2− 2b1 + b2,

The Chern-Gauss-Bonnet Theorem states that one can express this geometrically as

χ(M) =
ǫ

32π2

∫

M
|W (g)|2 − 2|Ric(g)|2 + 2

3S
2 d4Vg,

for any metric g of definite (ǫ = 1) or neutral signature (ǫ = −1) [49].
On a closed 4-manifold there is a natural symmetric bilinear pairing on the integral

second homology H2(M,Z). It is the sum of the number of transverse intersection
points between two surfaces representing the homology classes.

The intersection form can be diagonalised over R and the number of positive and
negative eigenvalues is denoted b+ and b−, respectively. Thus b2 = b+ + b− and the
signature τ(M) = b+ − b− is another topological invariant of M .

The existence of a neutral metric on a closed 4-manifold is equivalent to the existence
of a field of oriented tangent 2-planes on the manifold [52]. Moreover:

Theorem 22. [41] [48] [52] Let M be a closed 4-manifold admitting a neutral metric.
Then

χ(M) + τ(M) = 0 mod 4 and χ(M)− τ(M) = 0 mod 4. (13)

If M is simply connected, these conditions are sufficient for the existence of a neutral
metric.

Thus, neither S4 nor CP 2 admit a neutral metric, while the K3 manifold does.
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Given a neutral metric g′ on M , the Euler number and signature can be expressed
in terms of curvature invariants by

χ(M) =
−1

32π2

∫

M
|W+|2 + |W−|2 − 2|Ric|2 + 2

3S
2 d4Vg.

τ(M) = b+ − b− =
1

48π2

∫

M
|W+|2 − |W−|2 d4Vg.

where W± is the Weyl curvature tensor split into its self-dual and anti-self-dual parts,
Ric is the Ricci tensor and S is the scalar curvature of g′.

From these and Theorem 7, the following can be proven

Theorem 23. [19] Let (M, g′) be a closed, conformally flat, scalar flat, neutral 4-
manifold. If g′ admits a parallel isometric paracomplex structure, then

τ(M) = 0 and χ(M) ≥ 0.

If, moreover, the Ricci tensor of g′ has negative norm |Ric(g′)|2 ≤ 0, then M admits
a flat Riemannian metric.

On the other hand, Theorem 7 can also be used on Riemannian Einstein 4-manifolds
to find obstructions to parallel isometric paracomplex structures:

Theorem 24. [19] Let (M, g) be a closed Riemannian Einstein 4-manifold.
If g admits a parallel isometric paracomplex structure, then τ(M) = 0.

The K3 4-manifold, as well as the 4-manifolds CP 2#kCP
2
for k = 3, 5, 7, admit

Riemannian Einstein metrics and isometric almost paracomplex structures, but, as a
consequence of Theorem 24, these almost paracomplex structures cannot be parallel.
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Trivial Centre Group Orders

DES MACHALE

In memoriam Rex Dark

Abstract. We discuss the possible orders of finite groups that have trivial centre.

1. Introduction

The centre Z(G) of a group G is defined to be {z ∈ G|zx = xz, for all x ∈ G}. Z(G)
is a characteristic subgroup of G, which of course contains the identity element 1 of G.
A group in which Z(G) = {1} is said to have trivial centre. We discuss the question:

For which natural numbers n does there exist a group G with |G| = n
and G has trivial centre?

This is sequence A060702 in Sloane [1] and begins 1, 6, 10, 12, 14, 18, 20, 21, 22, 24,
26, 30, 34, 36, 38, 39, 42, 46, 48, 50, 52, 54, 55, 56, 57, 58, 60, 62, 66, 68, 70, 72, 74, 75,
78, . . .

We call these numbers the trivial centre group orders (TZ-numbers). The determi-
nation of all TZ-numbers seems to be a difficult problem, possibly out of reach at the
moment, but we can list many classes of numbers which belong to this set.

(1) For each n, 4n + 2 = 2(2n + 1) is a TZ-number. This is because the dihedral
group D2n+1 of order 2(2n+ 1) has trivial centre.

(2) If p is an odd prime and q > p is a prime such that p divides q − 1, then pq
is a TZ-number. This is because under these conditions, there exists a unique
group of order pq with trivial centre. This sequence begins 21, 39, 55, 57, 93,
111, 129, 183, 201, 203, 205, 219, . . .

(3) Let p be a prime such that p ≡ 1 (mod 4); then there are five isomorphism
classes of groups of order 4p. Two of those are abelian; there is D2p, dihedral,
and Qp, dicyclic, given by 〈a, b|a2p = 1; b2 = ap, b−1ab = a−1〉. All of these
have non-trivial centre. But there is a fifth isomorphism class of groups, the
semi-direct product of a cyclic group of order p by its unique cyclic subgroup
of order 4 in its automorphism group. This group has trivial centre. Thus if
p ≡ 1 (mod 4) then 4p is a TZ-number. This sequence begins 20, 52, 68, 116,
148, 164, 212, . . . ([1] A350115)

(4) Except for some small values of n, n! and n!/2 are TZ-numbers because the
symmetric group Sn and the alternating group An both have trivial centre.

(5) The simple non-abelian orders are clearly TZ-numbers. This sequence begins
60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, . . . ([1] A001034).

(6) We remark that the product of two TZ-numbers is also a TZ-number. This
is because for direct products, Z(G1 × G2) = Z(G1) × Z(G2). But not every
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multiple of a TZ-number is a TZ-number. For example, 14 is a TZ-number but
28 is not.

(7) A perfect group G is a group which satisfies G′ = G. Surprisingly, not all perfect
groups have trivial centre. An example is SL(2, 5). However, if G is perfect, it
is known that G/Z(G) has trivial centre (Grün’s lemma).

(8) A complete group G is a group with trivial centre in which every automorphism
is inner.
The sequence of complete orders begins 1, 6, 20, 24, 42, 54, 110, 120, 144, 156,
168, 216, 252, 272, 320, . . . ([1] A341298).

In 1975, Rex Dark discovered a non-trivial complete group G which had odd
order. It had order 33, 209, 467, 522, 096, 377 = 3 · 19 · 1712 [3].
More recently, he showed that the smallest possible non-trivial complete group
of odd order has order 352, 947 = 3 · 76.

We can also list several classes of numbers which are not TZ-numbers.
(9) These include the cyclic orders, the abelian orders and more generally the nilpo-

tent orders, which include the primes and the prime powers. We recall [2] that
n is a nilpotent number, i.e. every group of order n is nilpotent, if n is of the
form pa11 pa22 . . . patt , pi distinct and pki ✚✚≡ 1 (mod pj) for all integers i, j and k,
with 1 ≤ k ≤ ai. This sequence begins 1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17,
19, 23, 25, 27, 29, 31, 32, 33, 35, . . . ([1] A056867).
Since a finite nilpotent group has non-trivial centre, none of the terms of this
sequence, except the first, is a TZ-number.

(10) Let p be a prime such that p ≡ 3 (mod 4), p > 3. Then there are precisely
four isomorphism classes of groups of order 4p – two abelian, D2p, dihedral, and
Qp, dicyclic. All of these groups have non-trivial centre. Thus 4p is never a
TZ-number when p ≡ 3 (mod 4). This sequence begins 28, 44, 76, 92, 124, 172,
188, . . .

Some time ago, the author made the following

Conjecture. If n = 6t, for some natural number t, then n is a TZ-number.

I made some progress with this conjecture, for which the numerical evidence is over-
whelming, but could not finish it. Then I discussed it over coffee with Rex Dark at a
conference and this is the proof we came up with:

Theorem. If n is of the form 6t, for some natural number t, then n is a TZ-number.

Proof. Let n = 2k · 3 · m, with k ≥ 1 and m odd. We show there is a group G with
|G| = n and Z(G) = {1}.
Case 1: Suppose first that k is odd, say k = 2r + 1.

Take H = S3, K = K1 ×K2 × . . .×Kr, with Ki ≃ C2 × C2 and L = Cm.
Then Aut(C2 × C2) ≃ S3, so each of the groups Ki can be regarded as a faithful H

module. We can also make S3 act on L by taking A3 to centralise L and S3/A3 ≃ C2

to invert L elementwise. Thus H acts on K1, K2, . . . , Kr and on L, and we form
the corresponding semidirect product G = H · (K × L). Clearly, |G| = 6 · 4r · m = n
and Z(G) = {1}. We note that this construction still works when r = 0 (so K = {1})
and/or when m = 1 (so L = {1}).
Case 2: Next suppose that k is even, say k = 2r, r ≥ 1, and m = 1.

Take H = C3, K = K1 ×K2 × . . .×Kr, with Ki ≃ C2 × C2.
Then C3 ⊆ Aut(C2 × C2), so each of the groups Ki can be regarded as a faithful

H module, and we form the corresponding semidirect product G = HK. Then |G| =
3 · 4r = n and Z(G) = {1}.
Case 3: Finally, suppose that k = 2r (with r ≥ 1) and m > 1.
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As in Case 1, we can construct a group G1 with |G1| = 22r−1 · 3 and Z(G1) = {1}.
We also take G2 to be dihedral of order 2m and we form G = G1 × G2. Then |G| =
22r−1 · 3 · 2m = n and Z(G) = Z(G1)× Z(G2) = {1}, and we are done. �

2. Questions

Apart from a complete description of TZ-numbers, several other questions remain.
Among these are:

Q1: What is the density of TZ-numbers? Our remarks (1) to (10) and our theo-
rem could possibly throw some light on this question. Actual numbers in blocks
of 100 less than 2000 appear to indicate that a figure hovering around 49.5% of
natural numbers are TZ-numbers.
However, the preponderance of p-groups would seem to indicate that the pro-
portion of groups with trivial centre is very small.

Q2: The consecutive numbers 20, 21, 22; 54, 55, 56, 57, 58; and 200, 201, 202, 203,
204, 205 are all TZ-numbers. We ask if there exist arbitrarily long sequences of
this type.

Q3: Are there any other positive integers k (not a multiple of 6) for which kn is
always a TZ-number? Clearly, k cannot be 10, 14, 20, 21 or 22.
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Segre’s theorem on ovals in Desarguesian projective planes
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Abstract. Segre’s theorem on ovals in projective spaces is an ingenious result from
the mid-twentieth century which requires surprisingly little background to prove. This
note, suitable for undergraduates with experience of linear and abstract algebra, pro-
vides a complete and self-contained proof. All necessary pre-requisites, principally
evaluation of homogeneous polynomials at projective points and Desargues’ theorem
are presented in full. While following the broad outline of Segre’s proof, careful pa-
rameterisation of certain tangent lines results in shorter and simpler computations
than the original.

One of the most significant advances in the history of mathematics was the discovery
in the 17th century, principally by Descartes, that geometry could be understood in
algebraic terms. For example, a circle is defined geometrically as the set of points
equidistant from a given point. Algebraically, this could be understood as the set of
x and y satisfying (x − a)2 + (y − b)2 = r2. Within this framework lines and conic
sections could be described in an algebraic manner. The power of this connection was
that one could maintain geometric intuition but have the power of algebra to construct
rigorous proofs. It is no exaggeration to say that this discovery led to the development
of calculus, differential equations, linear algebra and most of modern mathematics. In
this paper, we shall investigate a fascinating connection between a geometric object and
an algebraic description, this time in a finite projective space.

The study of projective geometry has its roots in the attempts of renaissance artists
to accurately depict three dimensional scenes on a two-dimensional canvas. In the eigh-
teenth century, it was realised that the mathematical study of geometry is rather easier
in projective spaces than in Euclidean spaces, and projective geometries remain central
objects in modern mathematics. In this note we consider only the lowest dimensional
projective spaces, which are projective planes. Our purpose is to prove a theorem of
Segre identifying certain combinatorial configurations with the set of points at which
a suitable polynomial vanishes, [12]. The most important step in the proof is the cele-
brated Lemma of the Tangents, for which several ‘co-ordinate free’ proofs are available,
[4, 2]. Our purpose is to present an accessible account, broadly similar to Segre’s but
with all necessary background material and improving on certain technicalities in the
original proof.

Projective planes may be defined axiomatically as follows.

Definition 0.1. A projective plane consists of points, lines and an incidence relation
relating points and lines which obey the following axioms:

(1) There is a unique line incident with any two distinct points.
(2) Any two distinct lines are incident with a unique point.
(3) There exist four points, no three incident with a line.
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The third axiom is necessary so that certain degenerate geometric objects are not
planes (e.g. where all points lie on a single line). A projective plane may be constructed
from a two-dimensional vector space by ‘completing’ the space with a number of points
at infinity1. It is more convenient mathematically to begin with a three dimensional
vector space. Define projective points to be one dimensional subspaces and projective
lines to be two dimensional subspaces, with incidence given by containment2.

Verifying the axioms for a projective plane requires only elementary linear algebra:

(1) Two distinct one-dimensional subspaces span a unique two-dimensional space.
(2) Two distinct two-dimensional subspaces must intersect in a one-dimensional

space (because both spaces live in a three dimensional space - this claim would
not hold if we began with a vector space of dimension ≥ 4).

(3) There exist four lines, any three of which span the space, consider for example
the lines spanned by

(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1) ,

with respect to an arbitrary basis.

While a projective plane is constructed from a three dimensional vector space, it
is really a two-dimensional object: the points of the form [1 : y : z] clearly form a
two dimensional plane, while the remaining points [0 : 1 : z] and [0 : 0 : 1] are often
called points at infinity. Each parallel class of lines meets at a point at infinity, and all
points at infinity are collinear. By having these two distinct descriptions of the same
space, we are able to use whichever one is easier to construct a proof of a given result.
Vanishing points in perspective drawing may be considered points at infinity, and (at
least with one eye closed) we perceive the real projective plane visually, as opposed to
three dimensional Euclidean space.

Particular interest pertains to the projective planes constructed over finite fields, in
which case the number of points and lines in the plane is finite. There exists a finite field,
unique up to isomorphism, of any prime power order q, which we denote Fq, [9]. (For
the less experienced reader, the field of prime order p is precisely the integers modulo
p. Nothing is lost by considering this case throughout the paper.) It is an easy exercise
to see that the number of one- and two-dimensional subspaces of a three-dimensional
vector space over Fq is q2 + q + 1, while the number of one-dimensional subspaces in a
two-dimensional space is q + 1. We conclude that a finite projective plane constructed
from a vector space necessarily has q2 + q + 1 points and an equal number of lines.
Additionally, there are q + 1 points incident with any line, and q + 1 lines incident
with any point. Projective planes have been considered by mathematicians of the
highest calibre: Hilbert and Artin both wrote undergraduate-accessible accounts of the
foundations of geometry with a particular emphasis on projective planes, [7, 1]. Finite
projective planes are a more specialised topic, to which monographs have nevertheless
been devoted. Hughes and Piper, and one of the authors have written at advanced
undergraduate level, while Dembowski’s work is more demanding, [8, 6, 5].

We typically denote the line {(at, bt, ct) : t ∈ Fq} by the projective (or homogeneous)
coordinates [a : b : c]. Sometimes it is convenient to normalise projective coordinates so
that the first non-zero entry is 1: provided a is non-zero the projective points [a : b : c]
and [1 : a−1b : a−1c] are equal.

1There is nothing infinite about these points in a finite plane. In the infinite projective plane formed
from a Euclidean plane, such points would seem to be located at an infinite distance from every other
point.

2The reader should be aware that the projective dimension is typically one less than the standard
vector-space dimension. In the remainder of this note, dimensions are projective.
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Definition 0.2. A projective plane is Desarguesian if it is constructed from a three
dimensional vector space over a field (or more generally, a division algebra). Equiva-
lently, if it admits projective co-ordinates in a field (or division ring). The projective
plane over the field F is denoted PG2(F). Otherwise, it is non-Desarguesian.

In this note we consider only Desarguesian projective planes over finite fields. The
Desarguesian plane over a field of order q is said also to be of order q, though note that
there are q+1 points on each line. There do exist finite projective planes that are non-
Desarguesian. The smallest of these has 91 = 92+9+1 points. Some planes of this type
may be constructed from so-called quasi-fields, but others seem to have no discernible
algebraic structure. It is one of the foundational questions of finite projective planes to
determine for which orders non-Desarguesian planes exist. It is known that there is no
such plane containing 43 = 62+6+1 points or 111 = 102+10+1 points, but existence
is open for a plane on 157 = 122 + 12 + 1 points, and for infinitely many larger values.

1. Conics and ovals in a projective plane

Because a projective point corresponds to many distinct points in the underlying
vector space, it does not make sense to evaluate a polynomial at a projective point, but
it does make sense to ask whether a homogeneous polynomial is zero or non-zero at a
projective point, as

F (λx, λy, λz) = λkF (x, y, z)

for a homogeneous polynomial of degree k. The locus of points at which a homogeneous
polynomial in three variables evaluates to zero on a Desarguesian projective plane is
called the variety of the polynomial. We make no attempt to develop the theory of
algebraic varieties, the interested reader is referred to Shafarevich, Chapter 1 [13].

(1) A homogeneous polynomial of degree 1 describes a line in a projective plane.
For example, the equation y = 0 describes the projective points [1 : 0 : z] with
z ∈ Fq together with the point [0 : 0 : 1]. Setting x+2y− z = 0 gives the points
[x : y : x + 2y] where x, y ∈ Fq. While it may not appear that this set is one
dimensional, working projectively and setting z = y

x gives the set [1 : z : 1 + 2z]
where z ∈ Fq together with the point [0 : 1 : 2].

(2) Over the real field homogeneous polynomials of degree 2 describe circles, ellipses
and hyperbolae. Arguably the greatest achievement of ancient Greek geometry
was the unified treatment of these different varieties by considering the inter-
section of a plane and a cone in three dimensional space, leading to the name
conic sections for homogeneous polynomials of degree 2.

In analogy with the real case, we call a homogeneous polynomial of degree
two over any field a conic. We shall see shortly that the theory of conics over
a finite field is quite different from the case of the real field. The points of the

conic x2 + y2 + z2 correspond to projective points [x : y :
√
−x2 − y2] which

is an empty set over the real field. On the other hand, it can be verified that
42 = −(12+22) mod 7 so this variety is non-empty over F7. We shall see shortly
via purely geometric arguments that a non-degenerate conic section over a finite
field of odd order q will always have q + 1 points.

It will frequently be helpful to think of a variety as the graph of a function on a
two-dimensional plane. This is achieved in the following way: one breaks the analysis
into points in the 2-dimensional plane [1 : y : z], in which the homogeneous equation
F (x, y, z) = 0 can be rewritten as y = f(z), and then one considers the points at infinity
separately. (Of course, normalising as [x : y : 1] would move a different line to infinity
and give a different view of the same variety.)
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Recall that a tangent to a conic is a line meeting the curve at a single point. The
tangent to a curve is routinely found by linearising the curve (which is achieved over R
by computing a normal vector using partial derivatives and taking the orthogonal com-
plement). To a surprising extent, the geometric intuition over R which is the foundation
for calculus carries through to finite fields, though there is no longer any convergence
(and so ǫ − δ arguments no longer hold). In this note we take formal derivatives over
finite fields. The ordinary formulae continue to hold, though they require an entirely
different justification, which would lead us too far from the topic of the paper. We
justify this by claiming that these methods are provided for illustration, and are not
required in the proof of the main theorem. In any case, we define a tangent to a variety
over a finite field to be a line meeting the variety in a unique point.

Proposition 1.1. Let F (x, y, z) be a homogeneous function, and V its variety in pro-
jective space. The tangent space to F at v ∈ V is the orthogonal complement to the
normal vector ∇F = [∂F∂x : ∂F

∂y : ∂F
∂z ] evaluated at v (with respect to the standard inner

product).

This is perhaps best illustrated by an example.

Example 1.2. Consider the conic F (x, y, z) = x2 − yz over a field with at least 3
elements. Normalising the z co-ordinate shows that this is just the standard quadratic
function y = x2, completed by the point [0 : 1 : 0] at infinity.

The normal vector to F is given by ∇F = [∂F∂x : ∂F
∂y : ∂F

∂z ] = [2x : −z : −y], and the

tangent line at a point is the orthogonal complement of this vector.
For example, the point p = [1 : 1 : 1] is in the variety of F by inspection. The normal

vector at this point is [2 : −1 : −1] which is orthogonal to, for example, [0 : 1 : −1].
Thus a parametrisation of the tangent line at p is given by Tp = p + t[0 : 1 : −1] =
[1 : 1 + t : 1 − t], where t is a parameter taking values in Fq together with the point
[0 : 1 : −1]. It is easily verified that Tp is tangent to the variety: substituting a generic
point on the line into F (x, y, z) gives the equation

1− (1 + t)(1− t) = t2 = 0

which has a unique solution. Hence, Tp intersects the variety only at p.

The choice of vector orthogonal to ∇F (x, y, z) is far from unique. Nevertheless,
the resulting tangent line is unique (provided the defining equation satisfies technical
conditions which will always be met in this paper), though the parameterisation may
not be. Considering the tangent line as a two-dimensional subspace in the underlying
three-dimensional vector space and reflecting on the non-uniqueness of bases for such
spaces may assist the reader.

Definition 1.3. A conic in projective space is the locus of points of a homogeneous
polynomial of degree 2. A conic is non-degenerate if it is non-empty and does not
contain an entire projective line.

We note that this is a purely algebraic description of a conic, though motivated by
the geometry of the real field.

Proposition 1.4. A non-degenerate conic in PG2(Fq) contains q + 1 points. A non-
degenerate conic meets a line in at most two points.

Proof. The generic equation for a conic in PG2(Fq) is F (x, y, z) = αx2+βy2+γz2+δxy+
ǫxz+ζyz. The normal vector is ∇F (x, y, z) = [2α+δy+ǫz : 2β+δx+ζz : 2γ+ǫx+ζy],
which is linear in x, y, z. A conic is non-degenerate if and only if ∇F (x, y, z) is non-
zero for all [x : y : z] in the corresponding variety. In this case, the normal vector
uniquely determines a one-dimensional subspace in the underlying three dimensional
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vector space. This has a unique two-dimensional orthogonal complement, which is the
tangent line to the projective variety.

For the second claim, let p be a point on the conic F . Since there is a unique
tangent to the curve at p, and there are precisely q + 1 lines through p, each of the
q remaining lines through p must intersect the conic in additional points. (See Figure
1.) A line through p is described by a linear equation, and the conic by a quadratic
equation: substituting one into the other gives a polynomial in one variable of degree
at most 2. One root corresponds to p, and so there is precisely one additional point of
intersection. �

Figure 1. A conic F , with tangent T at the point p along with a pencil
of lines at p and their intersection points.

Again, Proposition 1.4 is best illustrated with an example. Before this example we
remark on a technique that will be used repeatedly.

Remark 1.5. The determinant of a 3×3 matrix having as rows representatives of three
projective points vanishes if and only the projective points are collinear. Equivalently,
three points in a three dimensional vector space have vanishing determinant if and only
if they are coplanar.

Example 1.6. Consider again the conic F (x, y, z) = x2 − yz over a field with at least
3 elements. Previously, we computed the tangent at [1 : 1 : 1]. Let us now construct
additional points on the curve.

Any line through p can be written parametrically as [1 + αt : 1 + βt : 1 + γt]. The
lines corresponding to (α, β, γ) and (α′, β′, γ′) are distinct if and only if the matrix




1 1 1
α β γ
α′ β′ γ′




is invertible. Let us compute the second point at which the line [1 + t : 1 + t : 1] meets
the curve:

(1 + t)2 − (1 + t) = 0 i.e. t2 + t = 0 .

The solution t = 0 corresponds to p, while the solution t = −1 corresponds to the
point [0 : 0 : 1] on F . In this way, every point on F can be constructed by computing
solutions of simple systems of equations.
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The reader is encouraged at this point to verify that the tangent to the conic of
Example 1.6 at q = [0 : 0 : 1] is the line {[1 : 0 : t] : t ∈ k} ∪ {[0 : 0 : 1]}. Furthermore,
the line x = αy contains q for any non-zero α, and the second point of intersection of
[t : αt : 1] with the variety is given by

t2 − αt = 0

which occurs when t = α. Hence, the points on the curve admit the parametrisation
[α : α2 : 1] together with a point ‘at infinity’ with respect to this parameterisation,
which is [0 : 1 : 0].

In contrast to the definition of a conic, the next definition is purely combinatorial.

Definition 1.7. An oval in a projective plane is a subset of the points of the plane
meeting no line in more than 2 points.

Proposition 1.8. An oval in a projective plane of order q contains at most q+2 points
if q is even and q + 1 points if q is odd.

Proof. Denote the oval by O, let p ∈ O and r /∈ O. Each line through p can intersect
the oval in at most one additional point, hence there at most q + 2 points on the oval.
If there are q + 2 points in O then every line intersecting the oval must do so in two
points, there can be no tangents to O.

Suppose now that O contains q + 2 points, and consider the lines through r which
intersect O. Since each contains precisely two points, the quantity q + 2, and hence q,
must be even. Consequently, when q is odd, an oval contains at most q + 1 points. �

Following immediately from Propositions 1.4 and 1.8, we have many examples of
maximal ovals in projective planes of odd order.

Corollary 1.9. A conic in a projective plane of odd order is a maximal oval.

Our goal in this paper is to prove Segre’s theorem, which is the converse of this
corollary: every maximal oval in a finite projective plane of odd order is actually a
conic. The reader may be tempted to think that this converse would be natural to
believe, however many prominent researchers in the area did not think that it was true.
It was first conjectured by Järnefelt and Kustaanheimo but Marshall Hall said in his
review that he found it implausible, [10]. Later Hall reviewed Segre’s paper saying that
the method of proof was ingenious.

Segre’s result is the best possible in the sense that there exist maximal ovals with
q + 2 points in finite planes of even order, not all of which can be constructed from
conics. The study of such maximal ovals in planes of even order was a key step in the
proof of the non-existence of the projective plane of order 10, [11]. The problem over
infinite fields does not appear amenable to classification.

2. The Desargues configuration

Historically, Desargues constructed and worked with projective planes constructed
from three dimensional vector spaces. Desargues’ theorem is a statement about the
collinearity of points lying in a particular configuration. Much later, it was realised
that combinatorial objects satisfying the axioms of a projective plane exist. It turns
out that the conclusion of Desargues’ theorem typically does not hold in these exotic
planes, and in fact, the validity of Desargues’ theorem is a necessary and sufficient
condition for co-ordinatisation of a plane by a field. Thus different authors can refer to
quite different statements when they write Desargues’ theorem. We refer the reader to
an elementary and historically motivated account of this topic by Blumenthal [3]. In
this section, we present the result as it would have been understood by Desargues: that
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is, in a plane co-ordinatised by a field. Our proof is via linear algebra, and we spend
some time illustrating its application, since it will be required in Segre’s theorem.

Definition 2.1. A triangle is a collection of three non-collinear points in a projective
plane. Let P = {p1, p2, p3} and S = {s1, s2, s3} be two triangles in a projective plane. If
the lines |p1s1| and |p2s2| and |p3s3| intersect in a point, then P and S are in perspective
from a point. This point is called the center of perspectivity.

Figure 2. The triangles p1p2p3 and s1s2s3 are in perspective. The
point P is the centre of perspectivity and L the line of perspectivity.
The points xij show the construction of the line L. One interpretation
of Desargues’ theorem is that x23 is necessarily on the line spanned by
x12 and x13.

Desargues’ theorem states, that in a Desarguesian projective plane, two triangles
in perspective from a point must satisfy an additional condition. Geometrically, the
intersection points of congruent sides of the triangle must be collinear. Algebraically,
this is expressed as the vanishing of a certain determinant. The following proof is the
ninth provided by Tan in an article surveying proof techniques for this result, [14].

Theorem 2.2 (Desargues’ theorem). Let P = {p1, p2, p3} and S = {s1, s2, s3} be
triangles in perspective in a projective plane. Denote by xij the intersection of the
congruent sides |pipj | and |sisj | of the two triangles.

Then the points x12, x13 and x23 are collinear.

Proof. By hypothesis, the triangles P and S are in perspective from a point, which we
may choose without loss of generality3 as c = [1 : 1 : 1]. Again without loss of generality,
we may label the points of one triangle as p1 = [1 : 0 : 0], and p2 = [0 : 1 : 0] and
p3 = [0 : 0 : 1].

By hypothesis, the point si is on the line through pi and c, so s1 = [1 + t1 : 1 : 1]
and s2 = [1 : 1 + t2 : 1], and s3 = [1 : 1 : 1 + t3]. The intersection of two lines is most
conveniently computed as the simultaneous solution of their linear equations. To find

3We will not justify this claim fully, but remark that this is the projective version of the claim that
since all bases of a vector space are equivalent, we lose no generality by working with the standard
normal basis.
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the line through s1 and s2, it suffices to compute conditions under which the unknowns
x1, x2, x3 render the following matrix rank deficient:




x1 x2 x3
1 + t1 1 1

1 1 + t2 1


 .

The necessary and sufficient condition, given by the vanishing of the determinant, is
t2x1+ t1x2− (t1t2+ t1+ t2)x3 = 0. The line through p1 and p2 is given by the equation
x3 = 0, and the intersection of these lines is the projective point x12 = [t1 : −t2 : 0].
Similar computations yield x13 = [−t1 : 0 : t3] and x23 = [0 : t2 : −t3]. These points
are collinear if and only if the corresponding matrix, in which points are written as
columns, 


t1 0 −t1
−t2 t2 0
0 −t3 t3




is rank deficient. But it is easily seen that the column-vector (1, 1, 1) is in the nullspace,
which completes the proof. �

We illustrate this theorem with an example, which will be required in the proof
Segre’s theorem.

Example 2.3. Suppose that p1 = [1 : 0 : 0] and p2 = [0 : 1 : 0] and p3 = [0 : 0 : 1]. The
lines of the triangle are then ℓ12 = [1 : t : 0] with equation x3 = 0 as well as ℓ13 and ℓ23
with equations x2 = 0 and x1 = 0 respectively.

Take P1 = [−1 : 1 : 1] and P2 = [1 : −1 : 1] and P3 = [1 : 1 : −1], which is in
perspective with the first triangle through the center of perspectivity [1 : 1 : 1]. Its lines
are L12 = [−1 + t : 1− t : 1 + t] = [1 : −1 : t] with equation x1 + x2 = 0. Similarly L13

has equation x1 + x3 = 0 and L23 has equation x2 + x3 = 0.
The intersection of ℓ1 with L1 is the point [1 : −1 : 0], the intersection of ℓ2 with L2

is [0 : 1 : −1] and the intersection of ℓ3 with L3 is [−1 : 0 : 1]. Writing these vectors as
columns, we perceive that the matrix




1 0 −1
−1 1 0
0 −1 1




is rank-deficient, which means that all three points are contained on a projective line,
with equation x+ y + z = 0.

3. The main theorem

With the necessary background in hand, we proceed to the proof of Segre’s theorem.
The key step is the famous Lemma of the Tangents, which proves that a particular pair
of triangles constructed from a conic is in perspective. The main result then applies
Desargues’ theorem to deduce an algebraic relation between the points on an oval from
this configuration. Our proof of Lemma 3.1 is essentially Segre’s, while our proof of
Theorem 3.2 departs from the original in some details while preserving the essential
argument. (Segre achieved his proof without mention of Desargues, though he used
the result heavily. He also required a combinatorial result of Qvist on intersections of
tangents of an oval which we avoid.)

Lemma 3.1. Let p1, p2, p3 be three distinct points on an oval in PG2(Fq) where q is
an odd prime power. Define si to be the intersection point of the tangents to the oval
at pi+1 and pi+2, with subscripts interpreted modulo 3. The triangles P = {p1, p2, p3}
and S = {s1, s2, s3} are in perspective.
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Proof. Without loss of generality, we may choose a co-ordinate system for the projective
plane so that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] .

Observe that the q+1 lines through p1 consist of the q lines L1(α) described by equations
of the form x2 = αx3 where α ∈ Fq, and the line L1(∞) with equation x3 = 0. The line
L1(∞) passes through p2 and the line L1(0) passes through p3. Of the remaining q− 1,
precisely one is tangent to the oval, which we denote L1(k1).

Define the lines L2(α) and L3(α) analogously as the lines passing through the points
p2 and p3 satisfying equations of the form x3 = αx1 and x1 = αx2 respectively. Simi-
larly, write L2(k2) and L3(k3) for the tangents at p2 and p3. The tangents L1(k1) and
L2(k2) are given by the equations x2 = k1x3 and x3 = k2x1, and so intersect at the
point s3 = [1 : k1k2 : k2]. Similarly, s1 = [k3 : 1 : k3k2] and s2 = [k1k3 : k1 : 1].

To show the triangles P = {p1, p2, p3} and S = {s1, s2, s3} are in perspective, we must
show that the three lines |p1s1| = L1(k2k3), and |p2s2| = L2(k1k3) and |p3s3| = L3(k1k2)
meet in a single point. The equations of these lines are respectively

x2 = k2k3x3, x3 = k1k3x1, x1 = k1k2x2 . (1)

We require a relation between the ki to show that these equations have a common
solution. Let c = [c1 : c2 : c3] be a point on the oval distinct from p1, p2, p3. The entry
ci must be non-zero, otherwise a line Lj(0) with j 6= i would intersect the oval in three
points. Denote by Li(λi) the line passing through c for i = 1, 2, 3. Since c2 = λ1c3, it
follows that λ1 = c2c

−1
3 . Similarly, λ2 = c3c

−1
1 and λ3 = c1c

−1
2 . We conclude that

λ1λ2λ3 = c2c
−1
3 c3c

−1
1 c1c

−1
2 = 1 .

Denote the remaining q− 2 points on the oval distinct from p1, p2, p3 by c1, . . . , cq−2.
Each line meets the oval in at most two points, so the line through pi and cj is distinct
from the line through pi and ck for j 6= k. Denote by λi,k the unique α ∈ Fq such that
Li(α) meets qk. By the above argument, the identity λ1,iλ2,iλ3,i = 1 holds for each
i ∈ {1, . . . , q − 2}.

The product of the non-zero elements in the field is −1 because the multiplicative
group is cyclic and so contains a unique element of order 2 which does not cancel with
its inverse in the product. Combining these observations, and using commutativity of
multiplication,

q−2∏

i=1

λ1,iλ2,iλ3,i =


 ∏

x 6=k1

x





 ∏

x 6=k2

x





 ∏

x 6=k3

x


 =


 ∏

x∈F∗
q

x




3

(k1k2k3)
−1 = 1 .

Since
(∏

x∈F∗
q
x
)3

= −1 we conclude that a non-trivial relationship holds between the

three tangents:

k1k2k3 = −1 . (2)

Returning at last to the claim: the point [1 : −k3 : k1k3] satisfies the conditions of
Equation (1) due to Segre’s identity, Equation (2). �

Finally, we show the result which is the aim of this paper, namely Segre’s theorem
which states that a maximal oval in a projective plane of odd order is in fact a conic.

Theorem 3.2. The points of a maximal oval in a finite projective plane of odd char-
acteristic satisfy a polynomial equation of degree 2.

Proof. As in Lemma 3.1, we choose a triangle P = {p1, p2, p3} on the oval, and up
to projective equivalence we may choose k1 = k2 = k3 = −1. With reference to the
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notation in Lemma 3.1, we have have the points, pi and the tangent lines Li(ki):

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1]

x2 = −x3, x3 = −x1, x1 = −x2,

Let c = [c1 : c2 : c3] be a point on the oval distinct from the pi. Let b1x1+b2x2+b3x3 = 0
be the unique tangent to the oval at c. As in Lemma 3.1 the co-ordinates ci are
all non-zero, and if bi were zero then pi would satisfy the equation of the tangent, a
contradiction.

Now, consider the triangle {c, p2, p3}, which by Lemma 3.1 is in perspective to the
triangle given by the three tangents

b1x1 + b2x2 + b3x3 = 0, x3 = −x1, x1 = −x2 .

By Desargues’ Theorem, these triangles are in perspective from a line: we will compute
the edges of {c, p2, p3} and intersect them with the appropriate tangents to derive a
relation between the bi and ci. First, we intersect the line |cp2| with the tangent to the
oval at p3. The points of the line |cp2| are of the form c+ tp2 = [c1 : c2 + t : c3], while
the equation of the tangent at p3 is given by x1 = −x2. Thus the unique solution is
[c1 : −c1 : c3]. Similarly, |cp3| intersects the tangent at p2 in the point [c1 : c2 : −c1]
and the tangent through c intersects |p2p3| at the point [0 : b3 : −b2].

These three points are collinear, so the determinant of the matrix



0 b3 −b2
c1 −c1 c3
c1 c2 −c1




must vanish. Using that c1 is non-zero, this is equivalent to the identity

b3(c1 + c3) = b2(c1 + c2) .

An analogous computation with the triangles {c, p1, p2} and {c, p1, p3} and the triangles
formed from their tangents gives two further identities:

b3(c2 + c3) = b1(c1 + c2), b1(c1 + c3) = b2(c2 + c3) .

Since [c1 : c2 : c3] lies on the line b1x1 + b2x2 + b3x3, the following identity holds:

(c1 + c2) (b1c1 + b2c2 + b3c3) = 0 .

Multiplying out and substituting the identities obtained from Desargues:

b1(c1 + c2)c1 + b2(c1 + c2)c2 + b3(c1 + c2)c3

= b3(c2 + c3)c1 + b3(c1 + c3)c2 + b3(c1 + c2)c3

= b3 ((c2 + c3)c1 + (c1 + c3)c2 + (c1 + c2)c3)

= 2b3 (c1c2 + c2c3 + c3c1) .

Since b3 6= 0 and the characteristic is odd, c1c2 + c2c3 + c3c1 = 0 holds for the point
[c1 : c2 : c3] of the oval. But the point c was an arbitrary point of the oval distinct from
the pi and the equation holds for the points pi. We have shown that the q+1 points of
the oval lie on the conic x1x2 + x2x3 + x3x1. This completes the proof. �

Remark 3.3. The reader may be perturbed by the explicit conic constructed in The-
orem 3.2. In fact, all conics in PG2(Fq) are projectively equivalent (in essentially the
same way that all bases of a vector space are equivalent up to choice of basis), and this
conic was forced by our choice of basis at the start of the proof.
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Pairs of Quadratic Forms over the Real Numbers

DAVID B. LEEP AND NANDITA SAHAJPAL

Abstract. This survey paper examines several topics concerning pairs of quadratic
forms with real coefficients. We state a theorem that characterizes pairs of real qua-
dratic forms having a nontrivial common zero and give a proof using a method based
on point-set topology. This proof relies on determining when various subsets associ-
ated with one quadratic form are path-connected. Additionally, we describe how the
signature and rank of a quadratic form change over a 2-dimensional family of qua-
dratic forms. Finally, we delve into nonsingular pairs of quadratic forms, simultaneous
diagonalization, and provide a proof of the spectral theorem. This paper presents a
self-contained exposition of these results.

1. Introduction

Determining whether a quadratic form f with real coefficients has a nontrivial real
zero is straightforward. One can start by diagonalizing f using linear algebra techniques
or repeatedly applying the completing the square method to express f in the form
d1X

2
1 + · · ·+ dnX

2
n. Then, f has a nontrivial real zero if and only if the di’s are not all

positive and not all negative.
Suppose that f, g ∈ R[X1, . . . , Xn] are quadratic forms in n variables. How does one

determine if f, g have a nontrivial common real zero? The answer to this problem is
much harder, but it is well known to experts and has been discussed in many places.
See [8] for a large bibliography on this subject. One of the main goals of this paper is
to answer this question with an exposition that is as self-contained as possible.

In Proposition 4.4, we determine when a pair of quadratic forms with real coefficients
has a nontrivial common zero. We follow a method based on point-set topology that
Swinnerton-Dyer used in [7, Lemma 1 (i)]. The ideas even go back at least as far as [2].
However, there seems to be a gap in Swinnerton-Dyer’s proof. Our exposition will fill
in the details of this gap. See Remark 4.7 for specifics.

In Section 2, we present essential material on quadratic forms that we need for this
paper. Since it is no extra trouble, we give definitions, statements, and proofs of results
in this section that are valid over any field K of characteristic different from 2. We
introduce the objects using a basis-free approach and then routinely use convenient
bases for efficient calculations.

In Section 3, we investigate some topological properties of the zero sets of one qua-
dratic form with real coefficients. Some of these properties are used in Section 4 to help
us solve our problem for pairs of quadratic forms with real coefficients.

In Sections 5 through 8, we study several other topics that are relevant to pairs of
quadratic forms over the real numbers. In Section 5, we study how the signature of a
quadratic form changes over a 2-dimensional family of quadratic forms. In Section 6,
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we study the ranks of quadratic forms in a 2-dimensional family of quadratic forms,
and we relate the rank to the multiplicity of a zero in a naturally occurring polynomial.
For quadratic forms f, g ∈ R[X1, . . . , Xn], we also study in Proposition 6.4 the problem
of finding a real linear combination λf + µg that splits off as many hyperbolic planes
as possible. In Section 7, we study nonsingular pairs of quadratic forms and conditions
when two quadratic forms can be simultaneously diagonalized. In Section 8, we apply
results from Section 7 to pairs of quadratic forms over R. In particular, we use Propo-
sition 8.1 to strengthen a result of Heath-Brown in [3, Lemma 12.1]. See Remark 8.2
for specifics. We end by using our results to give a proof of the Spectral Theorem.

Here are some of the notations and basic notions used throughout this paper. Let K
be a field and let K× = K\{0}. We let charK denote the characteristic of K. Let Kalg

denote an algebraic closure of K. Unless otherwise noted, we work only with fields K
with charK 6= 2. We let K[X1, . . . , Xn] denote the polynomial ring in n variables.

For f, g ∈ K[X1, . . . , Xn], we write f | g if f divides g in K[X1, . . . , Xn]. Recall
that f | g in K[X1, . . . , Xn] if and only if f | g in Kalg[X1, . . . , Xn]. A polynomial
f ∈ K[X1, . . . , Xn] is a homogeneous form of degree m, m ≥ 0, if each monomial in f
has degree m. If f is a homogeneous form, we say that (a1, . . . , an) is a nontrivial zero
of f if f(a1, . . . , an) = 0 and some ai 6= 0. A quadratic form is a homogeneous form of
degree 2. We let e1, . . . , en denote the standard basis of Kn.

We let R denote the field of real numbers and C the field of complex numbers. Recall
that C is an algebraically closed field and that C is the algebraic closure of R, and so
C = Ralg.

2. Basic results about quadratic forms

Definition 2.1 (Quadratic Map). Let V be a finite-dimensional vector space over a field
K. A quadratic map f : V → K is a function satisfying the following two conditions.

(1) f(av) = a2f(v) for all v ∈ V and a ∈ K.
(2) The function Bf : V × V → K defined by Bf (v, w) = f(v + w) − f(v) − f(w)

is a symmetric bilinear form.

We recover the usual notion of a quadratic form by introducing a basis {v1, . . . , vn}
of V . The definition of a quadratic map implies that f(X1v1 + X2v2) = f(v1)X

2
1 +

Bf (v1, v2)X1X2 + f(v2)X
2
2 . A straightforward induction implies that for variables

X1, . . . , Xn, we have

f(X1v1 + · · ·+Xnvn) =
n∑

i=1

f(vi)X
2
i +

∑

1≤i<j≤n

Bf (vi, vj)XiXj .

Let

f =
n∑

i=1

aiiX
2
i +

∑

1≤i<j≤n

aijXiXj ∈ K[X1, . . . , Xn],

where aii = f(vi), 1 ≤ i ≤ n, and aij = Bf (vi, vj) for 1 ≤ i < j ≤ n. We call f the
quadratic form associated to the quadratic map f : V → K and the basis {v1, . . . , vn}.
We see that f is a homogeneous form having degree 2, as expected.

Let f =
∑n

i=1 aiiX
2
i +

∑
1≤i<j≤n aijXiXj ∈ K[X1, . . . , Xn] be a quadratic form.

Associated to f is an n× n symmetric matrix M = (mij) where

mij =





aii if i = j
1
2aij if i < j
1
2aji if i > j.
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We have f(X1, . . . , Xn) = XtMX, where X = (X1, . . . , Xn)
t. It is convenient to

regard f as a function f : Kn → K. For a subspace W ⊆ Kn, we let f |W denote the
restriction of f to W .

The associated symmetric bilinear form to f is given by Bf : Kn ×Kn → K defined
Bf (v, w) = vtMw where v, w ∈ Kn are column vectors. Thus f(X) = Bf (X,X). For a
subspace W ⊆ Kn, we define the orthogonal complement

W⊥ = {v ∈ Kn | Bf (v, w) = 0 for all w ∈ W}.
It is easily verified that W⊥ is a subspace of Kn. We write W⊥f if we need to specify
the orthogonal complement of W for a particular quadratic form f.

Suppose that f : Kn → K is a quadratic map and that W is a subspace of Kn

such that Kn = W ⊕ W⊥. Let {v1, . . . , vj} and {vj+1, . . . , vn} be bases for W and

W⊥, respectively. Then the quadratic form associated to f and the basis {v1, . . . , vn} is
f1(X1, . . . , Xj) + f2(Xj+1, . . . , Xn), where f1 and f2 are the quadratic forms associated
to f |W and f |W⊥ , respectively, and the bases {v1, . . . , vj} and {vj+1, . . . , vn}.

Suppose V = W ⊕ Y and let f : V → K be a quadratic map. Let g = f |W and
h = f |Y . If Bf (w, y) = 0 for all w ∈ W , y ∈ Y, then we write f = g ⊥ h.

For quadratic forms f, g ∈ K[X1, . . . , Xn], the K-pencil of f, g, denoted by PK(f, g),
consists of all linear combinations af + bg where a, b ∈ K, not both zero.

Note that f, g have a nontrivial common zero over K if and only if rf+sg and tf+ug

have a nontrivial common zero over K where r, s, t, u ∈ K and the matrix

(
r s
t u

)
is

invertible. Because of this, it is often useful to replace f, g with two other convenient
quadratic forms in PK(f, g).

Two quadratic forms f, g ∈ K[X1, . . . , Xn] are equivalent, written f ∼= g, if there
exists an invertible n× n matrix A with entries in K such that f(X) = g(AX), where
X = (X1, . . . , Xn). In this situation, we say that f is obtained from g by an invert-
ible linear change of variables. If g(X1, . . . , Xn) = XtNX, then this is equivalent
to the condition M = AtNA. A quadratic form f is equivalent to a diagonal form
d1X

2
1 + · · ·+ dnX

2
n under an invertible linear change of variables over K because for

any symmetric matrix M there is an invertible matrix A such that AtMA is a diagonal
matrix. Such a diagonal form is denoted by 〈d1, . . . , dn〉.
Definition 2.2 (Rank of a Quadratic Form over K). The rank of a quadratic form f ,
denoted by rank(f), is the rank of the matrix M .

If f is equivalent to 〈d1, . . . , dn〉, then rank(f) is the number of nonzero di.

Definition 2.3 (Radical of a Quadratic Form). Let f ∈ K[X1, . . . , Xn] be a quadratic
form with associated symmetric bilinear form Bf . The radical of f over K is the
subspace

rad(f) = {v ∈ Kn : Bf (v,K
n) = 0}.

We say that a quadratic form f is nonsingular if rad(f) = 0, and is singular if
rad(f) 6= 0.

We can write Kn = V ⊕ rad(f) for some subspace V ⊆ Kn, and it is straightforward
to check that f |V is nonsingular. We let Null(M) denote the null space of a matrix M .

Lemma 2.4. Let f ∈ K[X1, . . . , Xn] be a quadratic form with associated n × n sym-
metric matrix M .

(1) rad(f) = Null(M).
(2) rank(f) + dim(rad(f)) = n.
(3) The following statements are equivalent.

(a) f is singular.



52 LEEP AND SAHAJPAL

(b) rad(f) 6= 0.
(c) rank(f) < n.
(d) det(M) = 0.

Proof. (1) Let v ∈ Null(M). Then Bf (w, v) = wtMv = 0 for all w ∈ Kn, and thus
v ∈ rad(f). Let v ∈ rad(f). Then Bf (w, v) = 0 for all w ∈ Kn. Thus wtMv = 0 for all
w ∈ Kn, which implies that Mv = 0. Therefore, v ∈ Null(M).

(2) We have n = rank(M) + dim(Null(M) = rank(f) + dim(rad(f)).
(3) The equivalence of the statements follows from the definitions, (1) and (2), and

the observation that det(M) = 0 if and only if Null(M) 6= 0. �

Definition 2.5 (Hyperbolic Plane). A quadratic form f ∈ K[X1, X2] is called a hy-
perbolic plane if f is equivalent to the quadratic form X1X2.

The following result is useful to identify a hyperbolic plane.

Lemma 2.6. Let f ∈ K[X1, X2] be a nonsingular quadratic form. The following state-
ments are equivalent.

(1) f has a nontrivial zero over K.
(2) f ∼= X1X2.
(3) f ∼= 〈1,−1〉.

Proof. (1) ⇒ (2): Let f = aX2
1 +2bX1X2 + cX2

2 with the associated symmetric matrix

M =

(
a b
b c

)
. Assume that f has a nontrivial zero over K. Applying an invertible

linear change of variables over K allows us to assume that f(1, 0) = 0. Then a = 0.
Since f is nonsingular, we have b 6= 0. Then f = X2(2bX1 + cX2) ∼= X1X2 because X2

and 2bX1 + cX2 are linearly independent.
(2) ⇒ (3): We have X1X2

∼= (X1 +X2)(X1 −X2) = X2
1 −X2

2 .
(3) ⇒ (1): X2

1 −X2
2 has a nontrivial zero over K, namely, X1 = 1, X2 = 1. �

For a quadratic form f ∈ K[X1 . . . , Xn], we say that f splits off a hyperbolic plane
if f is equivalent to X1X2+h(X3, . . . , Xn) for some quadratic form h ∈ K[X3, . . . , Xn].
Similarly, we say that f splits off j hyperbolic planes, if

f ∼= X1X2 +X3X4 + · · ·+X2j−1X2j + h(X2j+1, . . . , Xn).

Lemma 2.7. Suppose that f ∈ K[X1, . . . , Xn] is a nonsingular quadratic form that has
a nontrivial zero over K. Then f ∼= X1X2 + h(X3, . . . , Xn) for some quadratic form
h ∈ K[X3, . . . , Xn].

Proof. An invertible linear change of variables allows us to assume that f(1, 0, . . . , 0) =
0. Then f ∼= X1L(X2, . . . , Xn) +Q1(X2, . . . , Xn) where L is a linear form and Q1 is a
quadratic form, both with coefficients in K. We have L 6= 0 because rad(f) = (0). A
second invertible linear change of variables allows us to assume that

f ∼= X1X2 +Q2(X2, . . . , Xn) = X2(X1 + c2X2 + · · ·+ cnXn) + h(X3, . . . , Xn)

where Q2, h are quadratic forms with coefficients in K. A third invertible linear change
of variables allows us to assume that f ∼= X1X2 + h(X3, . . . , Xn). �

3. One Quadratic Form over the Real Numbers

In this section, we prove some basic properties of quadratic forms over R. We begin
by introducing some definitions and terminology that are specific to quadratic forms
over R. Let f ∈ R[X1, . . . , Xn] be a quadratic form with associated symmetric matrix
M .

Definition 3.1 (Definite, Semi-definite, Indefinite).
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(1) We say that f is a definite quadratic form over R if f(v) has the same sign for
every v ∈ Rn\0. According to that sign, the quadratic form f is called positive
definite or negative definite.

(2) We say that f is a semi-definite quadratic form over R if f(v) is either non-
negative or non-positive for every v ∈ Rn\0. If f(v) is non-negative for every
v ∈ Rn\0, then f is called positive semi-definite. If f(v) is non-positive for every
v ∈ Rn\0, then f is called negative semi-definite.

(3) We say that f is an indefinite quadratic form over R if f takes both positive
and negative values when evaluated at vectors in Rn\0.

We say that an n×n symmetric matrix M is positive definite (negative definite, semi-
definite, indefinite) if the quadratic form f(X1, . . . , Xn) = XtMX has that property.

Proposition 3.2. A quadratic form f ∈ R[X1, . . . , Xn] has a nontrivial zero over R if
and only if f is not definite.

Proof. Since f is equivalent to a diagonal form d1X
2
1 + · · ·+ dnX

2
n, it follows that f has

a nontrivial zero over R if and only if d1, . . . , dn do not all have the same sign. �

Definition 3.3 (Signature of a Quadratic Form over R). Suppose that f is equivalent
to 〈d1, . . . , dn〉. Let r be the number of elements in the set {di | di > 0, 1 ≤ i ≤ n}, and
s be the number of elements in the set {di | di < 0, 1 ≤ i ≤ n}. The signature of f ,
denoted by sgn(f), is defined by sgn(f) = r − s.

Proposition 3.4. The signature of f does not depend on the diagonalization of f .

Proof. We can write Rn = V1⊕V2⊕ rad(f) where dim(V1) = r and f is positive definite
on V1, dim(V2) = s and f is negative definite on V2, and dim(rad(f)) = t where t is the
number of di’s that equal zero.

Similarly, suppose that f is also equivalent to 〈d′1, . . . , d′n〉 and write Rn = V ′
1 ⊕ V ′

2 ⊕
rad(f) where V ′

1 , V
′
2 , rad(f) have dimensions r′, s′, t, respectively, as well as the other

properties above, and sgn(f) = r′ − s′.
Suppose that r 6= r′. We can assume that r < r′ and then s > s′ because r + s =

r′ + s′ = n− t. It follows that (V2 ⊕ rad(f)) ∩ V ′
1 6= (0) because

dim(V2 ⊕ rad(f)) + dim(V ′
1) = s+ t+ r′ > s+ t+ r = n.

Let v ∈ (V2 ⊕ rad(f)) ∩ V ′
1 with v 6= 0. Then f(v) ≤ 0 because v ∈ V2 ⊕ rad(f), and

f(v) > 0 because v ∈ V ′
1 . This contradiction shows that r = r′, and thus s = s′.

Therefore r − s = r′ − s′. �

Definition 3.5 (Principal Minor). Let M be an m × m square matrix. A principal
sub-matrix of M is a matrix obtained by deleting any k rows and the corresponding
k columns. The leading principal sub-matrix of order k of M is obtained by deleting
the last m− k rows and columns of M . The determinant of a principal sub-matrix of a
matrix M is called a principal minor of M , and the determinant of a leading principal
sub-matrix of M is called a leading principal minor of M .

A version of the following result is stated in many textbooks. See for example, [4, p.
328]. We give a particularly nice proof for the convenience of the reader. Note that a
principal minor in [4] is what we call a leading principal minor.

Proposition 3.6 (Sylvester’s Criterion). Let A be a real symmetric n×n matrix. The
following statements are equivalent.

(1) A is positive definite.
(2) Every principal minor of A is positive.
(3) Every leading principal minor of A is positive.
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Proof. (1) ⇒ (2) Suppose that A is positive definite. Then each principal i × i sub-
matrix B is positive definite. Since B = CtDC for some invertible i× i matrix C and
some diagonal i × i matrix D with positive entries along its main diagonal, it follows
that det(B) > 0. Thus (2) holds.

(2) ⇒ (3) is obvious.
(3) ⇒ (1) Assume that every leading principal minor of A is positive. The proof is

by induction on n with the case n = 1 being trivial. Assume that n ≥ 2 and that the
result has been proved for real symmetric (n− 1)× (n− 1) matrices. Let

A =

(
M v
vt c

)
,

where M is an (n− 1)× (n− 1) matrix, v is an (n− 1)× 1 matrix, and c ∈ R. Since all
leading principal minors of A are positive, it follows that every leading principal minor
of M is positive. Then det(M) > 0 and so M is invertible, and by induction, M is
positive definite. Note that M−1 is also symmetric. Let

L =

(
I 0

vtM−1 1

)
, B =

(
M 0
0 c− vtM−1v

)
.

Since

A =

(
M v
vt c

)
=

(
I 0

vtM−1 1

)(
M 0
0 c− vtM−1v

)(
I M−1v
0 1

)
,

we have

A = LBLt.

Since det(L) = 1 and det(M) > 0, this gives det(A) = det(L)2 det(B) = det(B) =
det(M) (c − vtM−1v). Since det(A) > 0, this gives c − vtM−1v > 0. Therefore B is
positive definite. Since A = LBLt, it follows that A is positive definite. �

Definition 3.7 (Path-Connected Topological Space). A topological space X is path-
connected if for any p, q ∈ X, there is a continuous map γ : [0, 1] → X such that γ(0) = p
and γ(1) = q. Such a map is called a path from p to q in X.

Definition 3.8 (Unit m−sphere, Sm). Let m ≥ 1 be any natural number. The unit
m−sphere is defined as

Sm =
{
(x1, . . . , xm+1) ∈ Rm+1

∣∣∣
m+1∑

i=1

x2i = 1
}
.

Lemma 3.9. For m ≥ 1, Sm is a path-connected subset in Rm+1.

Proof. Let x = (x1, . . . , xm+1). The map σ : Rm+1\0 → Sm given by σ(x) =
x√∑m+1
i=1 x2i

is a well-defined, continuous map such that σ(Rm+1\0) = Sm. Since Rm+1\0 is path-
connected for m ≥ 1 and a continuous image of a path-connected set is also path-
connected, it follows that σ(Rm+1\0) = Sm is a path-connected subset in Rm+1. �

The next three propositions determine whether certain subsets in Rn associated with
a quadratic form are path-connected. Some of these results are used later in the proofs
of Proposition 4.1 and Proposition 4.4. For the sake of completeness, we give a complete
treatment here.

Notation. Let f ∈ R[X1, . . . , Xn] be a quadratic form, and let f=0 denote the set
{x ∈ Rn\0 | f(x) = 0}. The notation f>0, f≥0, f<0, f≤0 are defined in a similar
fashion.
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Let X ⊂ Rn\0 be any subset. Consider the relation ∼ on X defined by p ∼ q if there
exists a path from p to q which lies entirely in X. Then ∼ is an equivalence relation on
X and the equivalence classes are called the path-connected components of X. The set
X can be written as a disjoint union of these path-connected components.

To study the path-connected components of the above sets, we will apply an invertible
linear change of variables to put the quadratic form into a convenient shape that is easy
to work with. Since an invertible linear map of Rn is a homeomorphism, path-connected
components are mapped to path-connected components.

Since a quadratic form defined over R can be diagonalized, it is easy to check that
if a quadratic form f ∈ R[X1, . . . , Xn] is indefinite and has rank r ≤ n, then ±f is
equivalent to either X2

1 + · · · + X2
r−1 − X2

r or X2
1 + · · · + X2

k − X2
k+1 − · · · − X2

r with
k ≥ 2, r − k ≥ 2. We focus on these two quadratic forms in Proposition 3.11 and
Proposition 3.12.

Proposition 3.10. Let f ∈ R[X1, . . . , Xn] be a quadratic form in n ≥ 2 variables.
Assume that rad(f) 6= 0. Then f=0, f≤0, and f≥0 are path-connected.

Proof. Let rank(f) = m. Then we can assume that f ∈ R[X1, . . . , Xm], and m < n
because rad(f) 6= 0. Let u = (a1, . . . , am, . . . , an) ∈ f=0. Then u = (a1, . . . , an) is
path-connected to u′ = (a1, . . . , am, 1, am+2, . . . , an) by a line segment that lies in f=0,
and u′ is path-connected to em+1 by a line segment that lies in f=0. Therefore, u is
path-connected to em+1 in f=0. Since any two points in f=0 are path-connected to
em+1, it follows that f=0 is path-connected.

The proof that f≤0 and f≥0 are path-connected is obtained by replacing each f=0

with either f≤0 or f≥0. �

Proposition 3.11. Let f = X2
1 + · · ·+X2

r−1 −X2
r ∈ R[X1, . . . , Xn], r ≤ n.

(1) (a) If 2 = r = n, then f>0, f≥0, f<0, and f≤0 each have two path-connected
components B1 and B2 where B2 = (−1)B1.

(b) If 2 = r < n, then f≥0 and f≤0 are path-connected.
(c) If 2 = r < n, then f>0 and f<0 each have two path-connected components

B1 and B2 where B2 = (−1)B1.
(2) (a) If 3 ≤ r < n, then f≤0 is path-connected.

(b) If 3 ≤ r, then f>0 and f≥0 are path-connected.
(c) If 3 ≤ r = n, then f≤0 is not path-connected.
(d) If 3 ≤ r then f<0 is not path-connected.
Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f≤0 (f<0). In (2c) and (2d), u, v

are path-connected in f≤0 (f<0) if and only if ar, br have the same sign. In
particular, f≤0 (f<0) has two path-connected components B1 and B2 where B2 =
(−1)B1.

(3) (a) If 2 ≤ r < n, then f=0 is path-connected.
(b) Let 2 ≤ r = n.

(i) If r = 2, then f=0 has four path-connected components.
(ii) Assume 3 ≤ r = n. Let u = (a1, . . . , ar), v = (b1, . . . , br) ∈ f=0. Then

u, v are path-connected in f=0 if and only if ar, br have the same
sign. In particular, f=0 has two path-connected components B1 and
B2 where B2 = (−1)B1.

Proof. (1) Note that in this case f = X2
1 −X2

2 .
(a) If 2 = r = n, then (1, 0) and (−1, 0) lie in f≥0 but are not path-connected

in f≥0 because a path joining (1, 0) and (−1, 0) would contain a point (0, b)
for some nonzero b ∈ R, but such a point would not lie in f≥0. Similarly,
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f>0 f<0 f=0 f≥0 f≤0

r = 2 = n No† No† No No† No †

r = 2, r < n No † No† Yes Yes Yes

r ≥ 3, r = n Yes No† No† Yes No†

r ≥ 3, r < n Yes No† Yes Yes Yes
Table 1. Summary of the results from Proposition 3.11. The sets
marked with “No†” have two path-connected components B1 and B2

where B2 = (−1)B1.

f>0 is also not path-connected. Since r = 2, by replacing f with −f, we
get that f<0 and f≤0 are each not path-connected.

(b) If 2 = r < n, then f≥0 and f≤0 are path-connected by Proposition 3.10.
(c) The points (1, 0, . . . , 0) and (−1, 0, . . . , 0) lie in f>0 but are not path-

connected in f>0 because a path joining (1, 0, . . . , 0) and (−1, 0, . . . , 0)
would contain a point (0, b2, . . . , bn) where some bi 6= 0, 2 ≤ i ≤ n, but
such a point lies in f≤0. Since r = 2, by replacing f with −f, we get that
f<0 is also not path-connected.

In (a) and (c), it follows that the indicated set is the union of two path-
connected components B1 and B2 where B2 = (−1)B1.

(2) (a) If 3 ≤ r < n, then f≤0 is path-connected by Proposition 3.10.
(b) Let 3 ≤ r and let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f>0. Then ai 6= 0 and

bj 6= 0 for some i, j where 1 ≤ i, j ≤ r − 1. Note that u = (a1, . . . , an) is
path-connected to u′ = (a1, . . . , ar−1, 0, . . . , 0) by a line segment that lies in
f>0, and v = (b1, . . . , bn) is path-connected to v′ = (b1, . . . , br−1, 0, . . . , 0)
by a line segment that lies in f>0. Since r ≥ 3, we have that Rr−1\{0} is
path-connected and thus u′, v′ are path-connected by a line segment that
lies in f>0. Therefore, f>0 is path-connected.
If 3 ≤ r < n, then f≥0 is path-connected by Proposition 3.10.
We can now assume that 3 ≤ r = n. Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈
f≥0. Since r = n, we have ai, bj 6= 0 for some i, j where 1 ≤ i, j ≤ r − 1.
Note that u = (a1, . . . , an) is path-connected to u′ = (a1, . . . , ar−1, 0) by
a line segment that lies in f≥0, and v = (b1, . . . , bn) is path-connected to
v′ = (b1, . . . , br−1, 0) by a line segment that lies in f≥0.
Since r ≥ 3, we have that Rr−1\{0} is path-connected and thus u′, v′ are
path-connected by a line segment that lies in f≥0. Therefore, f≥0 is path-
connected.

(c) Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f≤0. Then ar 6= 0 and br 6= 0
because r = n. First assume that ar, br have opposite signs. A path from
u to v must pass through some point w = (c1, . . . , cr−1, 0) where f(w) > 0.
Thus u and v are not path-connected in f≤0.
Now suppose that ar, br have the same signs. Note that u and u′ =
(0, . . . , 0, ar) are path-connected by a line segment that lies in f≤0, and v
and v′ = (0, . . . , 0, br) are path-connected by a line segment that lies in f≤0.
Since ar, br have the same signs, it follows that u′, v′ are path-connected by
a line segment that lies in f≤0. Therefore, u, v are path-connected in f≤0.
Since u ∈ f≤0 if and only if −u ∈ f≤0, it follows that f≤0 is the union of
two path-connected components B1 and B2 where B2 = (−1)B1.

(d) Let u = (a1, . . . , an), v = (b1, . . . , bn) ∈ f<0. Then ar 6= 0 and br 6= 0.
First assume that ar, br have opposite signs. A path from u to v must
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pass through some point w = (c1, . . . , cr−1, 0, cr+1, . . . , cn) where f(w) ≥ 0.
Thus u and v are not path-connected in f<0.
Now suppose that ar, br have the same signs. Note that u and u′ =
(0, . . . , 0, ar, 0, . . . , 0) are path-connected by a line segment that lies in f<0,
and v and v′ = (0, . . . , 0, br, 0, . . . , 0) are path-connected by a line segment
that lies in f<0. Since u

′ is path-connected to v′ by a line segment that lies
in f<0, it follows that u, v are path-connected in f<0. Since u ∈ f<0 if and
only if −u ∈ f<0, it follows that f<0 is the union of two path-connected
components B1 and B2 where B2 = (−1)B1.

(3) (a) This case follows from Proposition 3.10.
(b) First, assume 2 = r = n. Then f = X2

1 − X2
2 . The four path-connected

components are given by X2 = ±X1, X1 > 0, and X2 = ±X1, X1 < 0.
Now assume that 3 ≤ r = n. Let u = (a1, . . . , ar), v = (b1, . . . , br) ∈ f=0.
Then ar 6= 0, br 6= 0, and ai 6= 0, bj 6= 0 for some 1 ≤ i, j ≤ r − 1.
Suppose that ar and br have opposite signs. Then a path from u to v in
f=0 would pass through a nonzero vector of the form w = (c1, . . . , cr−1, 0)
where f(w) > 0. Therefore, u and v are not path-connected in f=0.
Now suppose that ar and br have the same signs. There exist c, d ∈ R>0

such that u′ = c(a1, . . . , ar−1), v
′ = d(b1, . . . , br−1) ∈ Sr−2. Then u′′ =(

u′,
ar
|ar|

)
and v′′ =

(
v′,

br
|br|

)
lie in f=0. Note that

ar
|ar|

=
br
|br|

= ±1.

We have that u is path-connected to u′′ by a line segment that lies in f=0

and v is path-connected to v′′ by a line segment that lies in f=0. Next, u
′′

is path-connected to v′′ by a path that lies in f=0 by Lemma 3.9 because
either u′′, v′′ ∈ Sr−2×{1} or u′′, v′′ ∈ Sr−2×{−1}. Thus u is path-connected
to v in f=0.
Therefore, u is path-connected to v in f=0 if and only if ar, br have the same
sign. It follows that f=0 is the union of two path-connected components
B1 and B2 where B2 = (−1)B1.

�

Proposition 3.12. Let f = X2
1 + · · · + X2

k − X2
k+1 − · · · − X2

r ∈ Rn[X1, . . . Xn] such
that rank(f) = r ≤ n. Assume that k ≥ 2, r − k ≥ 2. Then f>0, f≥0, f<0, f≤0, and
f=0 are each path-connected.

Proof. First, we show that f>0 is path-connected. Let u = (a1, . . . , an), v = (b1, . . . , bn)
be points in f>0. This implies that ai 6= 0, bj 6= 0 for some 1 ≤ i, j ≤ k. There exist
c, d ∈ R>0 such that letting

u′ = (ca1, . . . , cak, 0, . . . , 0), v′ = (db1, . . . , dbk, 0, . . . , 0),

we have u′, v′ ∈ Sk−1 × {0}n−k ⊂ f>0, where Sk−1 is the unit sphere in Rk.
Since Sk−1 is path-connected when k ≥ 2, u′ and v′ are path-connected in f>0. Since

u is path-connected to u′ by a line segment that lies in f>0, and v′ is path-connected
to v by a line segment that lies in f>0, it follows that u is path-connected to v in f>0

and hence f>0 is path-connected. It follows that f<0 = (−f)>0 is also path-connected.
If r < n, then rad(f) 6= 0 and hence f≥0, f≤0, and f=0 are each path-connected by

Proposition 3.10.
Now assume that r = n. We next show that f=0 is path-connected. Let u, v be points

in f=0. Write u = (p, q) and v = (r, s) where p, r ∈ Rk\0 and q, s ∈ Rn−k\0. There
exist c, d ∈ R>0 such that

(cp, cq), (dr, ds) ∈ Sk−1 × Sn−k−1 ⊂ f=0.
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Note that u is path-connected to (cp, cq) by a line segment that lies in f=0, and v is
path-connected to (dr, ds) by a line segment that lies in f=0. Since k ≥ 2 and n−k ≥ 2,
it follows that Sk−1 × Sn−k−1 is path-connected. Thus (cp, cq) is path-connected to
(dr, ds) in Sk−1 × Sn−k−1. It follows that u is path-connected to v in f=0, and thus f=0

is path-connected.
We now show that f≥0 is path-connected. We have e1 ∈ f>0 and e1 + ek+1 ∈ f=0.

The line segment joining e1 and e1 + ek+1 lies in f≥0. Since f>0 and f=0 are each
path-connected and there is a path in f≥0 joining e1 and e1 + ek+1, it follows that
f>0 ∪ f=0 = f≥0 is path-connected.

It follows that f≤0 = (−f)≥0 is also path-connected. �

The parts of Proposition 3.11 that are needed for the proofs of Proposition 4.1 and
Proposition 4.4 are parts 1(a), 1(c), 2(b), 2(d), and 3.

4. Two Quadratic Forms over the Real Numbers

Our proof of Proposition 4.4 below is slightly different from the proof given in [7,
Lemma 1 (i)]. We first give Swinnerton-Dyer’s proof of [7, Lemma 1 (ii)] in Proposi-
tion 4.1 and then use this result to give a simpler proof of [7, Lemma 1 (i)] in Proposi-
tion 4.4. We have added many details not included in Swinnerton-Dyer’s exposition.

Proposition 4.1. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms with n ≥ 2 and assume
that f is indefinite. Then there exist real zeros v, w on f=0 such that g(v) > 0 and
g(w) < 0 if and only if λf + g is indefinite for all λ ∈ R.

Proof. If there exist real zeros v, w on f=0 such that g(v) > 0 and g(w) < 0, then λf+g
is indefinite for all λ ∈ R because (λf + g)(v) > 0 and (λf + g)(w) < 0.

Now assume that λf + g is indefinite for all λ ∈ R. Suppose that g ≥ 0 on f=0. We
will obtain a contradiction. The case g ≤ 0 on f=0 is handled by replacing g with −g
and noting that −g ≥ 0 on f=0.

The set (λf + g)<0 does not meet f=0 for any real λ because f=0 lies entirely in
g ≥ 0. For any λ ∈ R, (λf + g)<0 is a non-empty, open set. Since λf + g is indefinite,
its rank is at least 2. Proposition 3.11, Proposition 3.12, and the comments above
Proposition 3.10 imply that the set (λf + g)<0 is either path-connected or has two
path-connected components B1, B2 where B2 = (−1)B1. Since f>0 and f<0 are disjoint
open sets, it follows that each path-connected component lies entirely in either f>0

or f<0. Since f is a quadratic form, f(v) = f(−v) for all v ∈ Rn, so it follows that if
(λf+g)<0 has two path-connected components, then both path components lie entirely
in either f>0 or f<0. Thus (λf + g)<0 lies entirely in either f>0 or f<0.

Define

Λ1 =
{
λ ∈ R

∣∣ λf + g < 0 lies in f > 0
}
,

and

Λ2 =
{
λ ∈ R

∣∣ λf + g < 0 lies in f < 0
}
.

Then Λ1 and Λ2 are disjoint and Λ1 ∪ Λ2 = R.

Claim. Λ1 and Λ2 are non-empty subsets of R.

Since f is indefinite, there exist v, u ∈ Rn\0 such that f(v) > 0 and f(u) < 0.

Choose λ1, λ2 ∈ R such that λ1 < −g(v)
f(v) and λ2 > −g(u)

f(u) . Then λ1f(v) + g(v) < 0 and

so λ1 ∈ Λ1. Similarly, λ2f(u) + g(u) < 0, and so λ2 ∈ Λ2.

Claim. Λ1 and Λ2 are open sets in R.
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Let λ ∈ Λ1. Then there exists v ∈ Rn such that λf(v) + g(v) < 0 and f(v) > 0.

This implies that λ < −g(v)
f(v) . If λ′ < −g(v)

f(v) , then λ′f(v) + g(v) < 0. Hence, λ ∈(
−∞,

−g(v)

f(v)

)
⊆ Λ1.

Similarly, for λ ∈ Λ2 there exists u ∈ Rn such that λf(u) + g(u) < 0 and f(u) < 0.

This implies that λ > −g(u)
f(u) . If λ′ > −g(u)

f(u) , then λ′f(u) + g(u) < 0. Hence, λ ∈(−g(u)

f(u)
,∞

)
⊆ Λ2. This proves the claim.

The previous two claims show that R can be written as a disjoint union of two non-
empty open sets, which is a contradiction. Therefore, there exist real zeros on f=0 that
give either sign to g. �

Remark 4.2. In Proposition 4.1, suppose that f is a positive semi-definite, but not a
definite quadratic form. If there exist real zeros on f=0 that give either sign to g, then
λf + g is indefinite for all λ ∈ R. However, the converse statement is not true, as the
next example shows.

Example 4.3. Let f = X2
1 + X2

2 and g = X1X3 + X2X4 be quadratic forms in
R[X1, X2, X3, X4]. Then f is positive semi-definite and g is indefinite. For any nonzero
λ ∈ R,

λf + g = λX2
1 + λX2

2 +X1X3 +X2X4

is indefinite because

(λf + g)(1, 1, 0, 0) = 2λ and (λf + g)(1, 1,−2λ,−2λ) = −2λ

are opposite in signs when λ 6= 0. Therefore, λf + g is indefinite for all λ ∈ R, but
g|f=0 = 0.

Proposition 4.4. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms with n ≥ 3. Then the
following statements are equivalent.

(1) The set f = g = 0 contains a nontrivial real zero.
(2) λf + µg is not definite for any real λ, µ, not both zero.
(3) For every real λ, µ, not both zero, λf + µg has a nontrivial real zero.

Proof. A definite quadratic form has no nontrivial real zero. A quadratic form that is
not definite is either semi-definite or indefinite, and in each case, the quadratic form
has a nontrivial real zero. Thus (2) and (3) are equivalent.

(1) ⇒ (2). If f = g = 0 has a nontrivial real zero, then λf + µg is not definite for
any real λ, µ, not both zero.

(2) ⇒ (1). Suppose that λf + µg is not definite for any real λ, µ not both zero. We
have the following two cases:

Case 1. Suppose there exists a semi-definite form in PR(f, g). Without loss of generality,
we may assume that f is a positive semi-definite quadratic form. Since f is not
definite, after an invertible linear transformation, we may assume that

f(X1, . . . , Xn) = X2
1 + · · ·+X2

r ,

where r < n is the rank of f , and

g =
∑

1≤i≤j≤n

aijXiXj .

Suppose first that g(0, . . . , 0, Xr+1, . . . , Xn) has no nontrivial zero over R.
Then g(0, . . . , 0, Xr+1, . . . , Xn) is definite, and by replacing g with −g if neces-
sary, we can assume that g(0, . . . , 0, Xr+1, . . . , Xn) is positive definite.
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For λ ∈ R, consider the symmetric matrix corresponding to λf + g:

r n− r





λ+ α11 ∗
r

. . . ∗
∗ λ+ αrr

n− r ∗ ∗

Since g(0, . . . , 0, Xr+1, . . . , Xn) is positive definite, the n− r leading principal
minors starting from the lower right corner of the above matrix are positive by
Proposition 3.6. Since λ appears only in the diagonal entries, we can choose λ0

large enough so that all leading principal minors starting from the lower right
corner are positive. Hence, Proposition 3.6 implies that λ0f + g is a positive
definite quadratic form, which is a contradiction.

Thus g(0, . . . , 0, Xr+1, . . . , Xn) has a nontrivial zero over R. This zero is then
a nontrivial common zero over R of f, g.

Case 2. Assume that every form in PR(f, g) is indefinite. Since f is indefinite and n ≥ 3,
Proposition 3.11, Proposition 3.12, and the comments above Proposition 3.10
imply that f=0 is either path-connected or is a union of two path-connected
components of the form B1 ∪ B2 where B2 = −B1.

Proposition 4.1 implies that there exist u, v ∈ f=0 such that g(u) > 0 and
g(v) < 0. We can assume that u, v lie in the same path-connected component
B of f=0 because v can be replaced by −v if necessary.

Consider a path γ : [0, 1] → B where γ is a continuous function satisfying
γ(0) = u and γ(1) = v. Since g : B → R is continuous, we have g ◦γ : [0, 1] → R
is a continuous function. The image of g◦γ is connected because the continuous
image of a connected space is connected. Since g◦γ(0) = g(u) > 0 and g◦γ(1) =
g(v) < 0, it follows that there exists c ∈ (0, 1) such that g ◦ γ(c) = 0. Thus
γ(c) ∈ B ∩ g=0 ⊆ f=0 ∩ g=0.

�

Example 4.5. Let f = 2X1X2, g = X2
1 − X2

2 . The pair f, g has no nontrivial zeros
over R, or even over C. Every form in the R-pencil is indefinite. This shows that the
hypothesis n ≥ 3 in Proposition 4.4 is necessary.

Example 4.6. This example shows that condition (2) in Proposition 4.4 is not the
same as the condition that λf + µg is indefinite for every real λ, µ, not both zero. In
particular, it really is necessary to consider Case 1 in the proof that (2) ⇒ (1). Let
1 ≤ j ≤ n− 2 and let

f = X2
1 + · · ·+X2

j

g = h(X1, . . . , Xj) +X2
j+1 + · · ·+X2

n−1 −X2
n,

where h is any quadratic form with real coefficients. Then f is positive semi-definite, but
not definite, and λf+µg is indefinite for every real λ, µ with µ 6= 0. Also, (0, . . . , 0, 1, 1)
is a real nontrivial common zero of f, g.

Remark 4.7. The proof of Proposition 4.4 is motivated by [7, Lemma 1 (i)]. However,
the proof given in [7, Lemma 1 (i)] did not consider Case 1 in the proof of (2) ⇒ (1).
The argument given in the proof of [7, Lemma 1 (i)] fails when f is semi-definite.
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5. Signature of a Quadratic Form

Let f, g ∈ R[X1, . . . , Xn] be two quadratic forms and let Mf ,Mg denote the symmet-
ric matrices corresponding to f, g, respectively. Let

D(λ, µ) = det(λf + µg) = det(λMf + µMg),

and call this the determinant polynomial of f, g. Either D(λ, µ) = 0 or D(λ, µ) is a
nonzero homogeneous form of degree n in the variables λ, µ. See Example 6.6 below for
an example where D(λ, µ) = 0. Let

T = {(λ, µ) ∈ S1 ⊂ R2 | det(λf + µg) = 0}.
Lemma 5.1. Assume that D(λ, µ) = det(λf + µg) is a nonzero homogeneous form in
the variables λ, µ. Then |T | ≤ 2n.

Proof. The hypothesis implies that D(λ, µ) = det(λf + µg) is a nonzero homogeneous
form of degree n in the variables λ, µ. Since D(λ, µ) has at most n distinct linear
factors defined over R, the equation D(λ, µ) = 0 has at most 2n distinct zeros on S1

because each linear factor aλ + bµ gives exactly two zeros

( −b√
a2 + b2

,
a√

a2 + b2

)
and

(
b√

a2 + b2
,

−a√
a2 + b2

)
of D(λ, µ) on S1. Therefore, |T | ≤ 2n. �

Next, we define the signature map

Sgn : S1 → Z

(λ, µ) 7→ sgn(λf + µg)

For any n× n matrix M and integer k with 1 ≤ k ≤ n, let M (k) denote the upper left
k × k sub-matrix of M , and let dk = det(M (k)).

In the following, we give the discrete topology to Z, which is the same as the subspace
topology inherited from the standard topology on R.

Proposition 5.2. Assume that D(λ, µ) is nonzero. The signature map Sgn is constant
on each connected component of S1 − T and thus Sgn is continuous at all points of S1

except for the finitely many points that lie in T ⊂ S1.

Proof. The set T is finite by Lemma 5.1. Let (λ0, µ0) ∈ S1 − T . Then λ0f + µ0g is
a nonsingular quadratic form. Since rad(λ0f + µ0g) = 0, we can write Rn = V ⊕ W
where (λ0f + µ0g)(v) > 0 for all nonzero v ∈ V , (λ0f + µ0g)(w) < 0 for all nonzero
w ∈ W , dim(V ) = r, dim(W ) = s, sgn(λ0f +µ0g) = r− s. The subspaces V,W are not
uniquely determined, but dim(V ), dim(W ) are uniquely determined by Proposition 3.4
and its proof. Let {v1, . . . , vr} be a basis of V and {vr+1, . . . , vr+s} a basis of W . Let

SV = {a1v1 + · · ·+ arvr ∈ V | a21 + · · ·+ a2r = 1},
SW = {ar+1vr+1 + · · ·+ anvn ∈ W | a2r+1 + · · ·+ a2n = 1}.

We take SV to be the empty set if r = 0, and similarly for SW if s = 0. The sets SV ,
SW are compact subsets of Rr, Rs, respectively.

The function τV : SV × S1 → R defined by τV (v, λ, µ) = vtMλf+µgv − vtMλ0f+µ0gv
is a polynomial function of the entries of v and of λ, µ, and thus a continuous function,
and similarly for the corresponding function τW : SW × S1 → R. Since SV × S1 and
SW ×S1 are compact subsets of the metric spaces Rr×R2, Rs×R2, respectively, uniform
continuity implies that for every ε > 0, there exists δ > 0 such that if (λ, µ) lies in Uδ,
the open neighborhood around (λ0, µ0) of radius δ, then

|vtMλf+µgv − vtMλ0f+µ0gv| < ε,
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for every v ∈ SV , with a similar statement holding for every v ∈ SW .
If SV is nonempty, let

AV = min
v∈SV

{|vtMλ0f+µ0gv|},

with AW defined similarly if SW is nonempty. Note that if SV is nonempty, then AV > 0
because SV is compact, and similarly, AW > 0 if SW is nonempty.

Let ε = min{AV , AW } if SV and SW are both nonempty. Otherwise, let ε = AV if
only SV is nonempty, and let ε = AW if only SW is nonempty.

Since |vtMλ0f+µ0gv| ≥ ε for all v ∈ SV ∪ SW , and since for all (λ, µ) ∈ Uδ, we have
|vtMλf+µgv − vtMλ0f+µ0gv| < ε, it follows that vtMλ0f+µ0gv and vtMλf+µgv have the
same sign for all v ∈ SV and (λ, µ) ∈ Uδ, with a similar statement for all v ∈ SW .

Therefore for all (λ, µ) ∈ Uδ, we have (λf + µg)(v) > 0 for all v ∈ SV and thus also
for all v ∈ V , and (λf+µg)(v) < 0 for all v ∈ SW and thus also for all v ∈ W . It follows
that the decomposition Rn = V ⊕W can be used to compute both sgn(λ0f + µ0g) and
sgn(λf + µg) and this gives

Sgn(λ0, µ0) = dim(V )− dim(W ) = Sgn(λ, µ),

for all (λ, µ) ∈ Uδ. This shows that Sgn : S1 − T → Z is a locally constant function.
Since Z is given the discrete topology it follows that Sgn is continuous on all the points
in S1−T . If Ci is a connected component of S1−T , then Sgn(Ci) is also connected. Since
the only connected sets in Z are singleton sets, we see that Sgn(Ci) is a constant. �

Proposition 5.3. Assume that D(λ, µ) 6= 0. For (λ, µ) ∈ S1, the signature of the
quadratic form λf +µg changes only as we pass through a point T on S1 and it changes
by at most twice the dimension of the radical of the form.

Proof. The proof of the first part of this proposition follows from Proposition 5.2. We
now show that as we pass through a point (λ0, µ0) in T on S1µ>0, the signature changes by

at most twice the dimension of the radical of the form λ0f+µ0g. Let rank(λ0f+µ0g) =
r < n. Without loss of generality, we may assume that λ0f + µ0g ∈ R[X1, . . . , Xr]. Let
C1, C2, . . . , Cs denote the connected components of S1 − T. Proposition 5.2 implies that
Sgn is constant on each Ci. Let C1, C2 be the two consecutive components such that
(λ0, µ0) is the point of singularity that disconnects C1 and C2 in S1. The form λf + µg
is nonsingular for all (λ, µ) ∈ C1∪C2. For all (λ, µ) ∈ {C1∪C2∪ (λ0, µ0)}, λ0f +µ0g and(
λf + µg

∣∣
Xr+1=···=Xn=0

)
are quadratic forms in r variables, and in this case λ0f + µ0g

is nonsingular when considered as a form in r variables. We define the following map
which is the restriction of Sgn defined above.

Sgn1 : C1 ∪ C2 ∪ {(λ0, µ0)} → Z

(λ, µ) 7→ sgn
(
λf + µg

∣∣
Xr+1=···=Xn=0

)

From Proposition 5.2, we know that Sgn1 is a locally constant map at points (λ, µ) ∈
C1 ∪ C2 ∪ {(λ0, µ0)} where λf + µg

∣∣
Xr+1=···=Xn=0

is a rank r quadratic form in the

variables X1, . . . , Xr. Since λ0f + µ0g is a nonsingular form in r variables, we can find
ε > 0 such that

Sgn1(λ, µ) = Sgn1(λ0, µ0) = Sgn(λ0, µ0)

for all (λ, µ) ∈ Bε(λ0, µ0) in S1. Choose (λ, µ) ∈ Bε different from (λ0, µ0). After
performing row and column operations on the symmetric matrix Mλf+µg, it can be
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written in the form
r n− r






c1 0

r
. . . 0

0 cr

n− r 0 B

As observed from the above matrix,

Sgn(λ, µ) = Sgn1(λ, µ) + sgn(B) = Sgn(λ0, µ0) + sgn(B).

Since | sgn(B)| ≤ n− r, we obtain

| Sgn(λ, µ)− Sgn(λ0, µ0)| ≤ n− r.

Choose (λ1, µ1) ∈ C1 and (λ2, µ2) ∈ C2 such that (λ1, µ1) and (λ2, µ2) lie in Bε. Then,

| Sgn(λ1, µ1)− Sgn(λ2, µ2)|
= | Sgn(λ1, µ1)− Sgn(λ0, µ0) + Sgn(λ0, µ0)− Sgn(λ2, µ2)|
≤ | Sgn(λ1, µ1)− Sgn(λ0, µ0)|+ | Sgn(λ0, µ0)− Sgn(λ2, µ2)|
≤ (n− r) + (n− r) = 2(n− r)

This finishes the proof of the Proposition. �

Example 5.4. Let

f = X2
1 + · · ·+X2

m + am+1X
2
m+1 + · · ·+ anX

2
n

g = bm+1X
2
m+1 + · · ·+ bnX

2
n.

Let sgn(g) = c. Let ε > 0 be a real number. Then for sufficiently small ε, we have
sgn(g+εf) = c+m and sgn(g−εf) = c−m. Then the difference of the two signatures,
which is 2m, equals two times the dimension of the radical of g.

6. Forms in the pencil containing many hyperbolic planes

Recall that K denotes an arbitrary field with characteristic not 2. Let H(X,Y ) ∈
K[X,Y ] be a homogeneous form of degree n ≥ 1. Then H factors in Kalg[X,Y ] as
a product of linear factors and we can write H(X,Y ) =

∏r
i=1 Li(X,Y )ei where each

ei ≥ 1, Li = αiX + βiY ∈ Kalg[X,Y ] is a linear form, 1 ≤ i ≤ r, and L1, . . . , Lr are
distinct in the sense that if i 6= j, then Li and Lj are not scalar multiples of each other.
This is the same as saying that Li and Lj are linearly independent if i 6= j.

Suppose that γ, δ ∈ Kalg, (γ, δ) 6= (0, 0), and H(γ, δ) = 0. Then Li(γ, δ) = 0 for
some unique value of i. In general, we say that (γ, δ) is a zero of H(X,Y ) of multiplicity
e if L(γ, δ) = 0 for some linear form L where Le is the exact power of L dividing H.

Lemma 6.1. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms. Assume that the homo-
geneous polynomial D(λ, µ) = det(λf + µg) of degree n does not vanish identically on
Kalg. If (λ0, µ0) is a zero of D(λ, µ) over Kalg of multiplicity m and r is the rank of
the quadratic form λ0f + µ0g, then m ≥ n− r.

Proof. Since the homogeneous polynomial D(λ, µ) does not vanish on Kalg, D(λ, µ) has
only finitely many linear forms (up to scalar multiplication) that occur as factors of D.
Let (λ0, µ0) be a nontrivial zero of D(λ, µ). We can assume that µ0 6= 0. After an
invertible linear change of variables, we can diagonalize and rewrite λ0f + µ0g as

λ0f + µ0g = b1X
2
1 + · · ·+ brX

2
r ,
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where rank(λ0f + µ0g) = r < n. Then

λf + µg = λf + µ
λ0f + µ0g − λ0f

µ0

=

(
λ− λ0

µ0
µ

)
f +

µ

µ0
(b1X

2
1 + · · ·+ brX

2
r )

Let M denote the symmetric matrix corresponding to the quadratic form λf+µg. Then

D(λ, µ) = det(M), where the matrix M is as shown below and α =

(
λ− λ0

µ0
µ

)
:

r n− r





αa11 +
µb1
µ0

∗
r

. . . ∗
∗ αarr +

µbr
µ0

αar+1,r+1 ∗
n− r ∗ . . .

∗ αann

Each term of the last n−r rows of M contains a factor of α =

(
λ− λ0

µ0
µ

)
. This implies

that

(
λ− λ0

µ0
µ

)n−r

divides D(λ, µ) over Kalg. Thus the linear factor (µ0λ − λ0µ)

appears at least n − r times in the linear factor decomposition of D(λ, µ) over Kalg.
Therefore, m(λ0,µ0) ≥ n− r. �

For x ∈ R, recall that ⌈x⌉ denotes the least integer greater than or equal to x.

Lemma 6.2. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms such that the determinant
polynomial D(λ, µ) = det(λf+µg) over K is not identically zero. Let L be an extension

of K with K ⊆ L ⊆ Kalg, and let r ≤
⌈
n
2

⌉
be a positive integer. Then the following

statements are equivalent.

(a) Every form in PK(f, g) has rank at least r.
(b) Every form in PKalg(f, g) has rank at least r.
(c) Every form in PL(f, g) has rank at least r.

Proof. Since K ⊆ L ⊆ Kalg, if every form in PKalg(f, g) has rank at least r, then every
form in PL(f, g) has rank at least r, which further implies that every form in PK(f, g)
has rank at least r. This shows that (b) ⇒ (c) ⇒ (a). We finish the proof by showing
that (a) ⇒ (b).

Suppose that every form in PK(f, g) has rank at least r, and suppose that there
exists a form αf + βg in PKalg(f, g) such that

rank(αf + βg) ≤ r − 1.

We can assume that either α = 1 or β = 1 because (α, β) 6= (0, 0) and (α, β) can be
multiplied by any nonzero element of Kalg. Assume that α = 1. (The other case is
handled similarly.) Then (1, β) is a zero of the determinant polynomial D(λ, µ) and
Lemma 6.1 implies that

m(1,β) ≥ n− (r − 1) ≥ n−
(⌈n

2

⌉
− 1

)
=





n

2
+ 1, if n is even

n+ 1

2
, if n is odd

>
n

2
.
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The same inequality holds for each conjugate of (1, β). Since the degree of D(λ, µ)
is n, it follows that (1, β) has only one conjugate, and thus β ∈ K, a contradiction to
(a). Hence every form in PKalg(f, g) has rank at least r. �

Example 6.3. This example shows that Lemma 6.2 fails to hold if r > ⌈n2 ⌉. Let

f = X2
1 −X2

2 and g = 2X1X2. Then each form in PR(f, g) has rank 2 > ⌈n2 ⌉ because

det(λf + µg) = det

(
λ µ
µ −λ

)
= −(λ2 + µ2). But over C, there are two forms of rank

1. Namely, f + ig = (X1 + iX2)
2 and f − ig = (X1 − iX2)

2.

Proposition 6.4. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms and assume that at least
one of f, g has rank n. Suppose that every form in PR(f, g) has rank at least r. Then

there exists a rank n form in PR(f, g) that splits off at least
⌈r
2

⌉
hyperbolic planes over

R, where
⌈r
2

⌉
=





r

2
if r is even

r + 1

2
if r is odd.

Proof. Assume that no rank n form λf +µg in PR(f, g) splits off ⌈ r2⌉ hyperbolic planes.
Let h ∈ PR(f, g) be any form having rank n and suppose that h splits off exactly j
hyperbolic planes where j ≤ ⌈ r2⌉ − 1. Then Lemma 2.7 implies that

h ∼= X1X2 + · · ·+X2j−1X2j + h′(X2j+1, . . . , Xn),

where h′ is definite. Thus

| sgn(h)| = | sgn(h′)| = n− 2j ≥ n− 2
(⌈r

2

⌉
− 1

)

for any form h ∈ PR(f, g) having rank n. Let

T = {(λ, µ) ∈ S1 | det(λf + µg) = 0},
and let Ci, 1 ≤ i ≤ t, denote the connected components in S1 − T . Since Sgn is an
odd function, there are two adjacent connected components on S1 where the signature
jumps from being positive to negative or vice versa. Therefore, there must be a jump

of at least 2
(
n− 2

(⌈r
2

⌉
− 1

))
for the signature as (λ, µ) varies on S1. By Proposition

5.3, such a jump occurs only when (λ, µ) passes through a point in T , and the jump is
bounded above by twice the dimension of the radical of the associated singular form.
Let λ0f + µ0g be that singular form in PR(f, g) and let r0 = rank(λ0f + µ0g). Then
the jump in the signature as we pass through (λ0, µ0) is bounded above by 2(n − r0).
Therefore,

2
(
n− 2

(⌈r
2

⌉
− 1

))
≤ 2(n− r0)

−2
(⌈r

2

⌉
− 1

)
≤ −r0

r0 ≤ 2
(⌈r

2

⌉
− 1

)
< r,

which is a contradiction because every form in PR(f, g) has rank at least r. Hence there

exists (λ, µ) ∈ S1 such that rank(λf + µg) = n and splits off at least
⌈r
2

⌉
hyperbolic

planes. �

Example 6.5. Let n ≥ 2 and let

f = r1X
2
1 + r2X

2
2 + · · ·+ rnX

2
n

g = X2
1 +X2

2 + · · ·+X2
n.
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Assume that r1, . . . , rn ∈ R and r1 < r2 < · · · < rn. If n is even, choose t ∈ R such
that rn

2
< t < rn

2
+1. If n is odd, choose t ∈ R such that either rn−1

2
< t < rn+1

2
or

rn+1
2

< t < rn+1
2

+1. Let h = f − tg. Then h has rank n and

sgn(h) =

{
0 if n is even

1 or − 1 if n is odd.

Every form in the R-pencil of f, g has rank ≥ n − 1 and h splits off exactly ⌈n−1
2 ⌉

hyperbolic planes. This shows that the bound in Proposition 6.4 is optimal.

Example 6.6. Let K be a field with charK 6= 2 and let n = 2m+ 1, m ≥ 1. Let

fm = X1X2 +X3X4 + · · ·+X2m−1X2m

gm = X2X3 +X4X5 + · · · +X2mX2m+1.

Every quadratic form in PK(fm, gm) can be written

afm + bgm = X2(aX1 + bX3) + · · ·+X2m(aX2m−1 + bX2m+1).

Thus every such form in PK(fm, gm) has rank 2m. Every quadratic form in PK(fm, gm)
splits off exactly 2m

2 = m hyperbolic planes. Note that D(λ, µ) = det(λfm + µgm) = 0
and that no form in PK(fm, gm) has rank n.

Pairs of quadratic forms, such as those in Example 6.6 and Theorem 6.7, are essen-
tial for classifying pairs of quadratic forms over fields K with charK 6= 2. We state
Theorem 6.7 without proof, but the interested reader can find a proof and additional
details in [5, Theorem 3.3] and [9, Theorems 3.1, 3.3].

Theorem 6.7. Let K be an infinite field with charK 6= 2. Let f, g ∈ K[X1, . . . , Xn] be
quadratic forms and assume that rad(f)∩ rad(g) = 0. Then there exist uniquely defined
positive integers m1, . . . ,mj, j ≥ 0, such that the pair f, g is equivalent to

f ∼= fm1 ⊥ · · · ⊥ fmj
⊥ q2(XM+1, . . . , XM+N )

g ∼= gm1 ⊥ · · · ⊥ gmj
⊥ q′2(XM+1, . . . , XM+N ),

and such that the determinant polynomial D(λ, µ) = det(λq2 + µq′2) over K is not

identically zero, M =
∑j

i=1(2mi + 1), and M +N = n.

Theorem 6.7 allows us to prove a stronger version of Proposition 6.4 where we can
weaken the hypothesis and still conclude the same result.

Theorem 6.8. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms and assume that rad(f) ∩
rad(g) = 0. Suppose that every form in PR(f, g) has rank at least r. Then there exists

a form in PR(f, g) that splits off at least
⌈r
2

⌉
hyperbolic planes over R, where

⌈r
2

⌉
=





r

2
if r is even

r + 1

2
if r is odd.

Proof. Let q1 = fm1 ⊥ · · · ⊥ fmj
and q′1 = gm1 ⊥ · · · ⊥ gmj

in the notation of
Theorem 6.7. Every form in PK(q1, q

′
1) has rank 2(m1 + · · ·+mj) and splits off m1 +

· · · +mj hyperbolic planes. The determinant polynomial det(λq2 + µq′2) 6= 0 and only
finitely many forms in PR(q2, q

′
2) have rank less than N . Every form in PR(q2, q

′
2) has

rank at least R := r−2(m1+ · · ·+mj). By Proposition 6.4, there exists a rank N form

in PR(q2, q
′
2) that splits off at least ⌈R2 ⌉ hyperbolic planes. Therefore, there exists a form

in PR(f, g) that splits off at least (m1 + · · ·+mj) + ⌈R2 ⌉ = ⌈ r2⌉ hyperbolic planes. �
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Remark 6.9. If a quadratic form in n variables splits off k hyperbolic planes, then

2k ≤ n. Thus Proposition 6.4 implies that 2
⌈r
2

⌉
≤ n. If r is even, this gives r ≤ n. If

r is odd, this gives r + 1 ≤ n, so r ≤ n− 1. That is, if r is odd, it is not possible that
every form in PR(f, g) has rank r = n. Here is a way to see this directly. Suppose that
r = n is odd. Then D(λ, µ) = det(λf +µg) is a homogeneous form of odd degree n over
R. Since every form of odd degree over R has at least one nontrivial zero, there exist
λ0, µ0 ∈ R, not both zero, such that λ0f +µ0g is singular, and so rank(λ0f +µ0g) < n.
Therefore, in Proposition 6.4, if r is odd, then r < n.

7. Nonsingular zeros and simultaneous diagonalization

Definition 7.1 (Nonsingular Zero). Let f, g ∈ K[X1, . . . , Xn] be quadratic forms.

(1) A vector v ∈ Kn is a nonsingular zero of f if f(v) = 0, and

∂f

∂X
(v) =

(
∂f

∂X1
(v), . . . ,

∂f

∂Xn
(v)

)

is not the zero vector, and is a singular zero otherwise.
(2) A vector v is a nonsingular common zero of a pair of quadratic forms f, g if

f(v) = g(v) = 0, and the vectors

∂f

∂X
(v),

∂g

∂X
(v)

are linearly independent over K, and is a singular common zero otherwise.
(3) We say that f, g is a nonsingular pair of quadratic forms if every nontrivial

common zero of f, g defined over Kalg is a nonsingular zero.

Proposition 7.2. Let n ≥ 2 and let f , g ∈ K[X1, . . . , Xn] be a nonsingular pair of
quadratic forms. Then every form in PK(f, g) has rank at least n− 1.

Proof. Assume that there exists a form in PK(f, g) having rank at most n− 2. We can
assume that g = g(X1, . . . , Xn−2). Let h(Xn−1, Xn) = f(0, . . . , 0, Xn−1, Xn). There
exist a, b ∈ Kalg, with (a, b) 6= (0, 0), such that h(a, b) = 0. Then (0, . . . , 0, a, b) is a
nontrivial singular zero of f = g = 0. �

For quadratic forms f, g,∈ K[X1, . . . , Xn], if D(λ, µ) is nonzero, then D(λ, µ) factors
as a product of linear factors over Kalg. Then next result shows that the linear factors
are distinct up to nonzero scalar factors in Kalg if and only if f, g is a nonsingular pair.

Proposition 7.3. Let K be a field with charK 6= 2 and let f , g ∈ K[X1, . . . , Xn] be
quadratic forms. The following statements are equivalent.

(1) f, g is a nonsingular pair of quadratic forms.
(2) The homogeneous polynomial D(λ, µ) = det(λf + µg) has no repeated linear

factors over Kalg.

Proof. (2) ⇒ (1). Suppose that a = (a1, . . . , an) is a nontrivial singular zero of f =
g = 0 where each ai ∈ Kalg. We can assume that this singular zero has coordinates
(1, 0, . . . , 0). Then

f = X1L1(X2, . . . , Xn) +Q1(X2, . . . , Xn),

where L1 is a linear form and Q1 is a quadratic form. Similarly,

g = X1L2(X2, . . . , Xn) +Q2(X2, . . . , Xn).

It follows from Definition 7.1 that L1, L2 are linearly dependent. Thus there exist
c, d ∈ Kalg, not both zero, such that cL1 + dL2 = 0. We can assume that d 6= 0 by
interchanging f and g if necessary. Then we can assume that L2 = 0 by replacing f, g
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with f, cf + dg. Thus λ divides each entry of the first row and column of λMf + µMg

and its (1, 1)-entry is zero. It follows that λ2 | D(λ, µ), a contradiction.
(1) ⇒ (2). Suppose that D(λ, µ) has a linear factor of multiplicity at least 2 over

Kalg. By choosing appropriate linear combinations of f, g in place of f, g, we can assume
that λ2 | D(λ, µ). Then the coefficient of µn in D(λ, µ) is zero, and thus det(Mg) = 0,
which implies that g has rank at most n−1. If g has rank at most n−2, then f = g = 0
has a singular zero over Kalg by Proposition 7.2. Thus g has rank n − 1. We can
assume that g = g(X2, . . . , Xn). Then g(1, 0, . . . , 0) = 0 and (1, 0, . . . , 0) ∈ rad(g),
where (1, 0, . . . , 0) denotes the point where X1 = 1 and Xi = 0 for i ≥ 2. Since the first
row and column of Mg are both zero, the coefficient of λµn−1 in D(λ, µ) is given by the
(1, 1)-entry of Mf times the determinant of the lower right (n− 1)× (n− 1) submatrix
of Mg. The coefficient of λµn−1 in D(λ, µ) is zero because λ2 divides D(λ, µ). Since
rank(g) = n−1, it follows that the (1, 1)-entry of Mf is zero and thus f(1, 0, . . . , 0) = 0.
Therefore, (1, 0, . . . , 0) is a singular zero of f = g = 0 because (1, 0, . . . , 0) ∈ rad(g). �

The converse of Proposition 7.2 does not hold in general, as shown in the next
example, but we show in Proposition 7.8 that the converse does hold if f and g are
simultaneously diagonalized as above.

Example 7.4. Let f = 2X1X2, g = X2
2 . Then every form in PR(f, g) has rank at least

1 but (1, 0) is a singular zero of the pair f, g. We have D(λ, µ) = det(λf + µg) = −λ2,
and so D(λ, µ) does not have distinct linear factors, as predicted by Proposition 7.3.

Lemma 7.5. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms and suppose that rank(g) <
n. If either f, g have no nontrivial common zero over K or λ2 ∤ D(λ, µ), then the pair
f, g is equivalent over K to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0.

Proof. There is an invertible linear change of variables over K that lets us assume that
g = g(X2, . . . , Xn). Let P = (1, 0, . . . , 0). We can write

f = a1X
2
1 +X1L(X2 . . . , Xn) +Q(X2, . . . , Xn)

where L,Q ∈ K[X2, . . . , Xn] with L a linear form and Q a quadratic form.
Suppose that a1 = 0. Then f(P ) = a1 = 0 and g(P ) = 0. In addition, a straight-

forward computation shows that λ2 | D(λ, µ). One of these statements contradicts our
hypotheses, and thus a1 6= 0.

We have

f = a1

(
X1 +

1

2a1
L

)2

+Q− 1

4a1
L2.

Let X ′
1 = X1 +

1
2a1

L and f1 = Q− 1
4a1

L2. Then f = a1(X
′
1)

2 + f1 and so the pair f, g
is equivalent to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where f1, g1 ∈ K[X2, . . . , Xn] are quadratic forms. �

Theorem 7.6. Let f, g ∈ K[X1, . . . , Xn] be quadratic forms and assume that D(λ, µ)
is a product of linear factors defined over K. If either f, g have no nontrivial common
zero over K or D(λ, µ) has no repeated linear factors, then f, g can be simultaneously
diagonalized over K.
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Proof. Since D(λ, µ) = det(λf + µg) has a linear factor defined over K, some form in
PK(f, g) has rank at most n − 1. By choosing appropriate generators of PK(f, g), we
can assume that rank(g) < n. Since either f, g have no nontrivial common zero over K
or λ2 ∤ D(λ, µ), Lemma 7.5 implies that the pair f, g is equivalent over K to

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0.
Suppose that m is maximal such that f, g are equivalent over K to

f = a1X
2
1 + · · ·+ amX2

m + q(Xm+1, . . . , Xn)

g = b1X
2
1 + · · ·+ bmX2

m + q′(Xm+1, . . . , Xn),

where q, q′ ∈ K[Xm+1, . . . , Xn] are quadratic forms. Then m ≥ 1. Suppose that m < n.
By unique factorization in K[λ, µ] it follows that det(λq+ µq′) is a product of linear

factors defined over K. In addition, either q, q′ have no nontrivial common zero defined
over K or det(λq + µq′) has no repeated linear factors. Repeating the argument at the
beginning of this proof gives a contradiction to the maximality of m. Therefore, m = n,
as desired. �

The next result shows that a nonsingular pair of quadratic forms can always be
simultaneously diagonalized over an algebraically closed field.

Proposition 7.7. Let f, g ∈ K[X1, . . . , Xn] be a nonsingular pair of quadratic forms.
Then f, g can be simultaneously diagonalized over Kalg.

Proof. Proposition 7.3 implies thatD(λ, µ) = det(λf+µg) is a product of distinct linear
factors over Kalg up to nonzero scalar factors in K. The previous theorem implies that
f, g can be simultaneously diagonalized over Kalg. �

Suppose that f, g ∈ K[X1, . . . , Xn] are simultaneously diagonalized quadratic forms.
Then

f = a1X
2
1 + a2X

2
2 + · · ·+ anX

2
n

g = b1X
2
1 + b2X

2
2 + · · ·+ bnX

2
n,

where each ai, bj ∈ K. Assume that (ai, bi) 6= (0, 0) for each i. Then

D(λ, µ) = det(λf + µg) =
n∏

i=1

(λai + µbi)

is a nonzero homogeneous form of degree n.
The next result gives additional characterizations of a nonsingular pair of quadratic

forms f, g in the case that f, g are simultaneously diagonalized.

Proposition 7.8. Suppose that f, g ∈ K[X1, . . . , Xn] are simultaneously diagonalized
quadratic forms, as above, with (ai, bi) 6= (0, 0) for each i. Then the following statements
are equivalent.

(1) f, g is a nonsingular pair of quadratic forms.
(2) D(λ, µ) has no repeated linear factors over Kalg.
(3) Every form in PK(f, g) has rank at least n− 1.
(4) aibj − ajbi 6= 0 for every i 6= j.

Proof. We have already seen in Proposition 7.3 that (1) and (2) are equivalent, and
in Proposition 7.2 that (1) ⇒ (3). We will prove that the negations of (2), (3), (4)
are equivalent. Statement (2) is false ⇔ there exists c ∈ K× and i 6= j such that
c(λai+µbi) = λaj+µbj ⇔ there exists c ∈ K× and i 6= j such that aj = cai and bj = cbi



70 LEEP AND SAHAJPAL

⇔ there exists c ∈ K× and i 6= j such that

(
ai aj
bi bj

)(
c
−1

)
=

(
0
0

)
⇔ statement (4) is

false. The last equivalence uses the assumption that each (ai, bi) 6= (0, 0).
Statement (3) is false ⇔ there exist r, s ∈ K, not both zero, such that rf + sg

has rank at most n − 2 ⇔ there exist r, s ∈ K, not both zero, and i 6= j such that
rai + sbi = raj + sbj = 0 ⇔ there exist r, s ∈ K, not both zero, and i 6= j such that(
ai bi
aj bj

)(
r
s

)
=

(
0
0

)
⇔ statement (4) is false. �

Let A =

(
ai aj
bi bj

)
. Note that the proof of the equivalence of (2) and (4) used the

matrix A, and the proof of the equivalence of (3) and (4) used the matrix At.
If charK = 2, then the characterization of nonsingular pairs of quadratic forms is

much more difficult. See [6].

8. Simultaneous diagonalization over the real numbers and the Spectral

Theorem

In this section, we include additional results on nonsingular pairs of quadratic forms
and simultaneous diagonalization that are specific to R.

Proposition 8.1. Let f, g ∈ R[X1, . . . , Xn] be a nonsingular pair of quadratic forms.
Then there exists a nonsingular form in PR(f, g) that splits off ⌈n−1

2 ⌉ hyperbolic planes
over R.

Proof. Since every nontrivial zero of f = g = 0 is nonsingular, Proposition 7.2 implies
that each form in PR(f, g) has rank at least n − 1. Proposition 6.4 implies that there
exists a nonsingular form in PR(f, g) that splits off at least ⌈n−1

2 ⌉ hyperbolic planes

over R. Since 2(⌈n−1
2 ⌉+ 1) > n, it follows that this nonsingular form splits off exactly

⌈n−1
2 ⌉ hyperbolic planes over R. �

Remark 8.2. If n = 8, Proposition 8.1 implies that there is a nonsingular form in
PR(f, g) that splits off 4 hyperbolic planes. This strengthens a result in [3, Lemma
12.1], where it is proved that there exists a nonzero form in PR(f, g) that splits off at
least 3 hyperbolic planes.

Lemma 8.3. Let f, g ∈ R[X1, . . . , Xn] be quadratic forms. Suppose that D(λ, µ) =
det(λf + µg) has no linear factors defined over R. Then every form h ∈ PR(f, g) has
rank n, n is even, and sgn(h) = 0.

Proof. The hypothesis implies that n ≥ 2. Proposition 5.2 implies that sgn(h) is the
same for all h ∈ PR(f, g) because T (as defined prior to Lemma 5.1) is the empty set.
Since sgn(−h) = − sgn(h), it follows that each h ∈ PR(f, g) has sgn(h) = 0. The
hypothesis implies that every form in PR(f, g) has rank n. Thus n is even. �

Theorem 8.4. If f, g ∈ R[X1, . . . , Xn] are quadratic forms and f is definite, then
D(λ, µ) is a product of linear factors defined over R and f, g can be simultaneously
diagonalized over R.

Proof. The proof is by induction on n ≥ 1, with the case n = 1 being obvious. Assume
that n ≥ 2 and that the result is true for fewer than n variables.

First suppose that D(λ, µ) has no linear factor defined over R. Then Lemma 8.3
implies that each h ∈ PR(f, g) has rank n and signature 0. This is a contradiction
because f is definite and thus has signature ±n. Then some form in PR(f, g) has rank
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at most n − 1. By choosing appropriate generators of PR(f, g), we can assume that
rank(g) < n. Lemma 7.5 implies that f, g is equivalent to the pair

f = a1X
2
1 + f1(X2, . . . , Xn)

g = g1(X2, . . . , Xn),

where a1 6= 0. The pair f1, g1 satisfies the hypotheses because f1 is definite. By
induction it follows that det(λf1+µg1) is a product of linear factors defined over R and
f1, g1 can be simultaneously diagonalized over R. Then the same holds for f, g. �

Corollary 8.5. If n ≥ 3, and f, g ∈ R[X1, . . . , Xn] are quadratic forms having no
nontrivial common zero over R, then f, g can be simultaneously diagonalized over R.

Proof. Since n ≥ 3 and f, g have no nontrivial common zero defined over R, Proposi-
tion 4.4 implies that there is a form h ∈ PR(f, g) that is definite. The result now follows
from the previous theorem. �

Example 8.6. This example shows that the previous corollary is false when n = 2.
Let f = 2X1X2 and g = X2

1 − X2
2 . The pair f, g is an anisotropic pair because there

is no nontrivial common zero of f, g with either X1 = 0 or X2 = 0. The pair cannot
be simultaneously diagonalized because D(λ, µ) = det(λf + µg) = −(λ2 + µ2) has no
linear factors defined over R.

These results lead to a proof of the Spectral Theorem. Much of the proof below is
standard linear algebra but is included for the sake of completeness.

Theorem 8.7 (Spectral Theorem). Let A be an n × n symmetric matrix with entries
in R. Then the following statements hold.

(1) Every eigenvalue of A is real.
(2) There exists an n×n orthogonal matrix P with entries in R such that P tAP is

a diagonal matrix.
(3) A has n pairwise orthogonal (and thus linearly independent) eigenvectors in Rn.

Proof. Let g(X1, . . . , Xn) = XtAX where X is the column vector (X1, . . . , Xn)
t and let

f(X1, . . . , Xn) = XtInX where In is the n×n identity matrix. Thus f = X2
1 + · · ·+X2

n.
Since f is positive definite, the pair f, g can be simultaneously diagonalized over R
by Theorem 8.4. Thus there exists an n × n invertible matrix M with entries in R
such that M tAM = D1 and M tInM = D2 are both diagonal matrices. Since D2

must be positive definite, each entry on the main diagonal of D2 is positive. Then
D2 = D2

3 for some invertible diagonal matrix D3 with entries in R. Let P = MD−1
3 .

Then P tAP = (D−1
3 )tM tAMD−1

3 = D−1
3 D1D

−1
3 = D−1

2 D1 is a diagonal matrix, and

similarly, P tInP = D−1
3 D2D

−1
3 = In. Thus P

tP = In and so P is an orthogonal matrix.
It follows that the columns of P are pairwise orthogonal and thus linearly independent.

We have P−1AP = P tAP = D−1
2 D1, which gives AP = P (D−1

2 D1). Let D−1
2 D1 =

diag(d1, . . . , dn). Let v1, . . . , vn be the columns of P . The equation AP = P (D−1
2 D1)

implies that Avi = divi for 1 ≤ i ≤ n. Thus the columns of P are pairwise orthogonal
eigenvectors of A with eigenvalues d1, . . . , dn. These eigenvalues of A are real because
the diagonal matrices D1 and D2 have real entries. �
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There are infinitely many primes: two ring-theoretic variations on

Euclid

ALAN ROCHE

Abstract. Using elementary ring theory, we present two proofs in the mode of Euclid
that there are infinitely many primes.

1. Introduction

Euclid’s proof of the infinitude of primes is a paragon of incisive mathematical rea-
soning. It’s the first entry—deservedly—in Aigner and Ziegler’s compilation, their ter-
restrial approximation to the celestial BOOK [1, p. 3]. The result (infinitude of primes)
has been re-proved over and over. Aigner and Ziegler, for example, discuss six proofs
in their first chapter and infinitely many more (in a sense) in an appendix.

We use elementary ring theory to show, yet again, that there are infinitely many
primes. The argument’s strategy is simple: if p1, . . . , pn is the complete list of primes,
then the ring of rational numbers Q is obtained from the ring of integers Z by adjoining
the single element 1/p1 · · · pn. The task then is to show that this is an untenable
structure for Q which we do in two overlapping ways. In each case, the proof makes use
of the key Euclidean manoeuvre: given the list of primes p1, . . . , pn, consider p1 · · · pn+1.

We conclude with some comments on Euclid’s classic argument.

2. First Proof

Given nonzero integers a1, . . . , an, we write Z[1/a1, . . . , 1/an] for the smallest subring
of Q containing Z and each 1/ai. Equivalently, it’s the smallest subring of Q with
identity in which a1, . . . , an are invertible. As the notation suggests, it consists of all
f(1/a1, . . . , 1/an) for f(X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn].

Note that

Z[1/a1, . . . , 1/an] = Z[1/a1 · · · an]. (1)

Indeed, a1 · · · an is invertible (in a subring of Q with identity) if and only if each ai is
invertible (in that subring), and so the two rings coincide.

Suppose now that there are only finitely many primes, say p1, . . . , pn. Since each
positive integer m is a product of primes, our supposition implies that 1/m is in
Z[1/p1, . . . , 1/pn], and therefore

Q = Z[1/p1, . . . , 1/pn].

Equivalently, by (1), Q = Z[1/p1 · · · pn]. To simplify the notation, we set a = p1 · · · pn,
so that Q = Z[1/a].

2020 Mathematics Subject Classification. 11A41, 13A05.
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In particular, 1/(a+ 1) ∈ Z[1/a]. This means there exist integers c0, c1, . . . , cm such
that

1

a+ 1
= c0 + c1

1

a
+ · · ·+ cm

1

am
.

Multiplying through by am, we have

am

a+ 1
= c0a

m + c1a
m−1 + · · ·+ cm ∈ Z.

That is, a + 1 divides am. Now 1 = [(a+ 1)− a]m. Expanding the right side, we see
that

1 = A(a+ 1) + (−1)mam,

for some integer A. Since a + 1 divides am, it follows that a + 1 divides 1 which is
absurd. We’ve proved that there are infinitely many primes. �

3. Second Proof

Assume once more that there are only finitely many primes p1, . . . , pn. As above, it
follows that Q = Z[1/a] for a = p1 · · · pn. In other words, the homomorphism of rings

f(X) 7→ f(1/a) : Z[X] → Q (2)

is surjective. We write Ia for its kernel, so that (2) induces an isomorphism of rings

f(X) 7−→ f(1/a) : Z[X]/Ia
≃−→ Q. (3)

In particular, Z[X]/Ia is a field, or equivalently Ia is a maximal ideal in Z[X].
To finish the argument, we could appeal to a property of maximal ideals in Z[X]—

that each such ideal contains some nonzero constant polynomial. Indeed, as Ia contains
no nonzero constants, we see that Ia cannot be maximal, a contradiction.

This approach, however, is unsatisfying: the property that maximal ideals in Z[X]
contain nonzero constants lies deeper than the existence of infinitely many primes.
Instead, we’ll use only our bare hands to prove the following: if Z[X]/Ia is a field then
a+1 must divide 1 (as in the first proof). Our path to this absurdity rests on identifying
the structure of the ideal Ia.

Lemma. We have Ia = (aX− 1), the principal ideal generated by aX− 1.

The ideal of elements of Q[X] that vanish at 1/a is generated by X− 1/a and so also
by aX − 1. The proof that Ia is generated by aX − 1 is then a short exercise using
Gauss’s Lemma—a product of primitive polynomials is primitive. (Recall an element
of Z[X] is primitive if the greatest common divisor of its coefficients is 1.) We prefer,
however, a still more elementary, albeit ad hoc approach. We want to avoid all tools
beyond the most basic properties of polynomials, even one as fundamental as Gauss’s
Lemma.

Proof. Let f(X) = c0 + c1X + · · · + cmXm ∈ Z[X] with cm 6= 0, so f(X) has degree m.
We have

c0 + c1
1

a
+ · · ·+ cm

1

am
=

c0a
m + c1a

m−1 + · · ·+ cm
am

.

Thus f(1/a) = 0 if and only if f̃(a) = 0 where

f̃(X) = Xmf(1/X) (4)

= c0X
m + c1X

m−1 + · · ·+ cm.

We call f̃(X) the reverse of f(X) and going from f(X) to f̃(X) reversing. Visibly, the
reverse of the reverse of f(X) is f(X): reversing is an involution on the set of nonzero
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elements of Z[X]. Moreover, it follows readily from (4) that reversing is multiplicative:

that is, f̃1f2(X) = f̃1(X)f̃2(X) for nonzero fi(X) ∈ Z[X] (i = 1, 2).
Remember the division algorithm for polynomials applies to monic elements of Z[X].

Hence, for g(X) ∈ Z[X], we have g(a) = 0 if and only if X− a divides g(X) in Z[X]. In
particular,

f̃(a) = 0 ⇐⇒ f̃(X) = (X− a)h(X),

for some h(X). Reversing the polynomial equation and noting that the reverse of X− a
is − (aX− 1), we see that

f̃(a) = 0 ⇐⇒ f(X) = (aX− 1)
(
−h̃(X)

)
.

Thus f(1/a) = 0 if and only if aX− 1 divides f(X). We’ve proved the lemma. �

Now, since a+ 1 /∈ Ia, the coset (a+ 1) + Ia is invertible in the field Z[X]/Ia. Hence
there is an h(X) ∈ Z[X] such that (a+ 1)h(X) + Ia = 1 + Ia. Using the lemma, it
follows that

(a+ 1)h(X) = 1 + (aX− 1) k(X), (5)

for some k(X). Substituting X = a, we obtain

(a+ 1)h(a) = 1 +
(
a2 − 1

)
k(a),

and so
(a+ 1) [h(a)− (a− 1) k(a)] = 1.

Again, we’ve reached the absurdity that a+ 1 divides 1. We’ve proved once more that
there are infinitely many primes. �

4. Comments on Euclid’s Proof

First, let’s recast Euclid’s argument in the language of ring theory.

Proof. Let a be a nonunit in Z, that is, a 6= ±1. Then a has a prime divisor p, or
equivalently a ∈ (p) for some prime p. We assume that there are only finitely many
primes, say p1, . . . , pn. It follows that each nonunit in Z is contained in some (pi), and
therefore

Z \ {±1} =
n⋃

i=1

(pi). (6)

Now p1 · · · pn + 1 is not divisible by pi, for i = 1, . . . , n. That is,

p1 · · · pn + 1 /∈
n⋃

i=1

(pi).

Using (6), we have p1 · · · pn + 1 = ±1. Nonsense! We conclude that there are infinitely
many primes. �

Remark 1. We’ve presented our variants of Euclid’s argument in terms of contradic-
tion. In this form, they give the existence of infinitely many primes. As many have
noted, however, Euclid’s reasoning is constructive (see, for example, [2, p. 31]): given
a finite list of primes p1, . . . , pn, Euclid gives a way (an inefficient way) of adjoining a
new prime to the list—namely, any prime factor of p1 · · · pn + 1.

Having dressed Euclid’s proof in ring-theoretic garb, we can use some set theory to
obtain a small generalization. First, some notation. For R a ring with identity, we write
R× for the group of units of R.

Proposition. Let R be a PID that is not a field and suppose the cardinality of R× is
strictly smaller than that of R. Then R contains infinitely many irreducible elements
(up to multiplication by units).
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The result applies, in particular, if R× is finite.

Proof. We assume that R has only finitely many irreducible elements ̟1, . . . , ̟n (up
to multiplication by units) and will show that R× and R have the same cardinality.

By hypothesis, each nonunit in R is divisible by some ̟i. Therefore

R \R× =
n⋃

i=1

(̟i).

Now, for r ∈ R, the element 1+ r̟1 · · ·̟n is not contained in any (̟i), and so belongs
to R×. Hence we have a map

r 7→ 1 + r̟1 · · ·̟n : R → R×

which is injective (as R is a domain). By the Schröder-Bernstein Theorem, R× and R
have the same cardinality. �

Remark 2. The proposition is not sharp—it was too easy to prove to expect it to
be sharp! That is, there are PIDs R with infinitely many irreducible elements (up
to multiplication by units) for which R× has the same cardinality as R. Example:
R = Z[

√
2]. Indeed, as (

√
2+1)(

√
2−1) = 1, we see that R× contains the infinite cyclic

group generated by
√
2 + 1, and so is countably infinite.

Remark 3. Which PIDs R contain infinitely many irreducible elements (up to multi-
plication by units)? The note [3] gives a characterization in terms of the polynomial
ring R[X]: a PID R has the given property if and only if each maximal chain of prime
ideals in R[X] has length two, that is, has the form {0} $ p1 $ p2, for prime ideals pi
in R[X] (i = 1, 2).
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REVIEWED BY RÓISÍN & AOIFE HILL

Prior to reaching the preface, it is written that “nothing in this book should be
taken too seriously”. It’s a book filled with ‘anecjokes’ (anecdotes and jokes) about
mathematics or mathematicians and includes limericks, riddles, endless wit, and even
an exam at the end. This is an extension to the Des MacHale’s earlier book, Comic
Sections [1], now including an additional thirty years worth of witty mathematical
material.

The preface sets the scene particularly well - MacHale’s passion for this project has at
its core his desire not only to humanise mathematics and mathematicians but to use this
humorous content to aid in the study and understanding of mathematics. As in every
good joke book, logic is spun on its head time and again; when paradoxically coupled
with the ever-logical mathematics, wit shines through. To emphasise this, MacHale
cleverly quotes Einstein: “As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer to reality”.

The book is filled with many ‘inside’ jokes that non-mathematicians may (i) be
puzzled by and (ii) regret letting this be known to a mathematician after this leads to a
lecture about what Euler’s number and imaginary numbers are (see: “Old MacDonald

was not a great mathematician. He couldn’t work out the value of ei
ei

0

.”). However,
this is what made the book feel special; it felt like a place of community. It’s the first
joke book I’ve read where my academic education has been a blessing rather than a
curse. As a maths book, it’s as rare as a four-leaf clover - it may not quite satisfy
uniqueness, but it certainly fits into the small subset of maths books that can be easily
picked up by anyone in, or even on the cusp of, the field (although, MacHale jibes that
some branches of mathematics are less susceptible to humour).

This book is an excellent aid for the classroom. MacHale explains the importance of
humour in this setting and how best to use it, recommending it to be used as “dessert”
or “seasoning”. He reasons that a paradoxical proof that 2 = 1 and the resulting
discussion and analysis will provide elementary students with a greater understanding
and interest than lengthy axioms or theorems. Such humour can not only be insightful
but also be an excellent memory aid for students.

The book is split into twelve chapters, ranging from a dictionary of mathematical
terms (“clearly” et al.) to riddles to humorous journal reviews that will be sure to
hit at least one nerve. A “Questioner’s Handbook” is included to help eliminate the
uncomfortable silence accompanied by “any questions?” after a seminar that failed to
resonate with the audience. “Mathematical Wit and Wisdom”, a chapter devoted to
what has previously been said about mathematics both by those within and outside the
field, may be my favourite, containing a remarkable collection of insight into the many
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attitudes towards mathematics. Chapter 11, “Those magnificent men on their Turing
machines”, sums up the tongue in cheek nature of the book, reminding us of the all too
familiar funding struggles imposed by those without an understanding of what is truly
essential in mathematics. The book ends with “The Final Examination”, where you’re
reminded not to “attempt to write on both sides of the paper at the same time” and an
extra credit question tells you to “persuade the first passer-by you meet to accompany
you through life, using irony where necessary”.

Ultimately, this is an excellent concept well-executed, reinforcing that humour can
be found in every level of Mathematics. It is a brilliant compendium whether you’re
looking for a page-turner to dip into during a coffee break or looking to bring wit into
the classroom in a way that remains thought-provoking.
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REVIEWED BY TOMMY MURPHY

The physicist Freeman Dyson opined that all mathematicians are by temperament
either eagles or frogs. The eagle soars over the mathematical landscape, observing con-
nections between apparently disparate fields and generalising theorems whilst staying
light on details, whereas the frog stays in a small locality of the world of mathematics,
delving into the intricacies and focused on a deep understanding of specific questions.
Dyson’s thesis is that the academy needs both viewpoints, and collaborations are en-
riched when these two tribes work together. Poincaré is widely believed to be the last
person who could soar high enough to see the entire mathematical landscape; due to
the specialised nature and enormous volume of mathematical research nowadays even
our eagles tend to roam within one or two well-trodden research areas.

In “The Story of Proof”, John Stillwell has written a well-crafted, thought-provoking
meditation on the concept of proof in mathematics, which is used as an organising
principle to explain, in broad brushstrokes, how disparate fields of mathematics emerged
and lay bare the origins of some of major problems in mathematics. If you are interested
in pure mathematics, you should buy and/or read this book. In the spirit of Dyson’s
dichotomy, it is enlightening and satisfying to learn more about how different areas of
research are connected. To give one such example, I had never known how knot theory
arose from the study of singularities of algebraic curves. Before reading this book I
also did not fully appreciate that Dedekind and Kronecker developed field extensions
in an attempt to abstract of the concept of dimension for vector spaces, and used this
to answer the ancient Greek problem of duplicating a cube. The book is full of such
insights. I learnt field extensions and applications as an undergraduate, and have never
really thought about them since or why they were important as it is not relevant to
my research. The point is that in today’s competitive race to the coal-face of research,
we tend to focus on specific topics and questions and much context is lost without an
appreciation of how and why these questions arose. As undergraduates we learn about
the insolvability of the quintic: we perhaps do not appreciate the reason that surds are
of interest in this context is because of the connection with compass-and-straightedge
constructions arising from ancient Greek mathematics.

A fascinating theme of the book is the connection between logic and computation.
As Stillwell points out, in Greek times logic was comparatively strong but the theory
of computation was weak. Thus was born the great glories of Greek mathematics, as
opposed to other civilisations of the time who could compute but did not truly under-
stand. Computational techniques advanced tremendously with the advent of calculus,
and logic and proof had to catch up. This of course leads us to the natural develop-
ment of analysis in the eighteenth century. As such, the book begins by focusing on a
(somewhat perfunctory) survey of Euclid, before jumping to Hilbert’s axiomisation of
geometry. At times the pace is too fast and material is not fully explained: we find the
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question of proving consistency of an axiomatic system by constructing a model being
mentioned, without motivation, on page 48. Nevertheless, there is much to glean from
the text even if some statements wash over the reader initially. The gradual realisation
that logic and computation were closely related mathematical concepts is explained well
in this book, culminating in a very satisfactory survey of the work of Gödel and Turing.
By this stage questions of consistency make more sense to the reader.

Stillwell has many interesting examples explaining how various proofs of a theorem
evolved which will enrich the reader’s appreciation and understanding. A striking ex-
ample of this is in the discussion of various failed proofs of the Fundamental Theorem
of Algebra. Trying to battle through the maze of details here is what led Bolzano to
realise the importance of trying to establish the Intermediate Value Theorem via the
least upper bound property: a crucial component in the development of real analysis
and closely connected to Dedekind cuts. Another instance, though certainly not novel
to this book, is the emphasis placed on explaining the origins of algebraic geometry and
placing them in the context of Greek work on conics.

I know of no comparable book on the market. It is not suitable as a textbook for
an undergraduate or postgraduate course on the history of mathematics, owing to its
dizzying pace and the deliberate choice to omit details and proofs in many places and to
emphasise connections. It is not a comprehensive overview of every aspect of the history
of mathematics, rather a discourse on what we are really doing in mathematics and how
our understanding of proof, computation, and logic have evolved and intertwined over
two millennia of human thought, and how remarkably interconnected mathematics is.
It is a substantive book that deserves to be read and reflected upon.
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REVIEWED BY HENRY RICARDO

Probably all readers of this journal have encountered binomial coefficients many times
in their teaching and/or research. Even Gilbert and Sullivan’s Modern Major General
declared “About binomial theorem I’m teeming with a lot o’ news.”As someone who is
not a combinatorialist (or a military officer) but who haunts the problem sections of
various mathematical journals, I have encountered many challenging problems involving
binomial coefficients. Often my instinct is to check Gould’s impressive compendium [1]
of over 500 binomial coefficient identities—but, unfortunately, there are no proofs.

In ten chapters, Michael Spivey succeeds in bringing together in a systematic way
the many methods used in dealing with binomial coefficients. The techniques covered
in this book consist of algebra (including finite difference methods and complex num-
bers), calculus, linear algebra, and combinatorics/probability. Anyone absorbing the
techniques in Spivey’s book should be prepared to understand Gould’s collection and
tackle deeper works such as Riordan’s classic monograph [2]. This is not an encyclo-
pedia, although the convenient Index of Identities and Theorems makes it easy to find
alternative proofs or other uses of particular identities. Because of the way Spivey’s
book ties together several key courses in the undergraduate mathematics curriculum,
a university maths department could base a senior seminar or capstone course/project
on this book.

The author starts by proving the equivalence of four definitions of the binomial
coefficient for integers n and k with n ≥ k ≥ 0:

(1) The number of subsets of size k formed from a set of n elements;

(2)
(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
when n−1 ≥ k ≥ 1 with boundary conditions

(
n
0

)
=

(
n
n

)
= 1;

(3) the coefficient of xk in the expansion of (x+ 1)n in powers of x;
(4)

(
n
k

)
= n!

k!(n−k)! .

Later, Spivey generalises to n ∈ R and k ∈ Z.

Two of my favourite topics are given good introductory treatments: the central
binomial coefficient (CBC) and reciprocal binomial coefficients (RBCs). One worked-
out example yields this gem:

∞∑

n=0

1(
2n
n

) =
4

3
+

2π
√
3

27
.

The CBC is developed further in other sections of the book, including discussions of
Catalan numbers and lattice paths. A number of other sums (finite and infinite) of
RBCs are discussed and are listed in the very useful Index to Identities and Theorems,
but the term reciprocal binomial coefficient is missing from the main index.
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Some of the over 300 numbered identities appear as examples, while others are used
as exercises. Throughout the book there are historical inserts, presenting snippets of
information about various mathematicians: Eric Temple Bell, the Bernoulli family,
. . . , Newton, Pascal, Stirling, . . . , Vandermonde, Zeilberger. There are also end-of-
chapter notes that provide context for the chapter’s results and/or recommendations for
further reading. Appendices include an 82-item Bibliography and Hints and Solutions
to Exercises—the latter particularly useful for self-study.

In the final chapter (“Mechanical Summation”), art gives way to science. Here the
author explains the powerful Gosper-Zeilberger algorithm, both Gosper’s original form
and Zeilberger’s extension. Hypergeometric series are introduced early. The treatment
contains “very heavy algebra”, in the author’s words, but is a tour de force of exposition.

In summary, this is a delightful and useful book: A readable introduction to bi-
nomial coefficients and many of their applications for the advanced undergraduate or
graduate student, an aid to those mathematically mature individuals who are not com-
binatorialists, an inspiration for those who attempt to solve problems involving binomial
coefficients.
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Problems

The first problem this issue was proposed by Toyesh Prakash Sharma of Agra College,
India.

Problem 91.1. Prove that the angles α, β and γ of a triangle satisfy
(
1 + sec2 α+ sec2 β + sec2 γ

)
(1− cosα cosβ cos γ) > 8

The second problem is from Des MacHale of University College Cork.

Problem 91.2. Prove that the perimeter P and area A of a cyclic quadrilateral satisfy

P 2
> 16A,

with equality if and only if the cyclic quadrilateral is a square.

The third problem was proposed by Tran Quang Hung of the Vietnam National
University at Hanoi, Vietnam.

Problem 91.3. Let A0, A1, . . . , An be the vertices of a simplex in n-dimensional Eu-
clidean space for which the edges A0A1, A0A2, . . . , A0An are mutually perpendicular.
Let Bi be the centroid of the set of points {A0, A1, . . . , An} \ {Ai}, for i = 0, 1, . . . , n.
Consider any point C other than A0 for which the line through A0 and C is perpen-
dicular to the hyperplane spanned by A1, A2, . . . , An, and let P be the midpoint of the
segment B0C. Prove that all distances PBi are equal, for i = 1, 2, . . . , n.

Solutions

Here are solutions to the problems from Bulletin Number 89.
The first problem was solved by Ryan Quinn, Seán Stewart of the King Abdullah

University of Science and Technology, Saudi Arabia, the North Kildare Mathematics
Problem Club, and the proposer Des MacHale. We present the solution and figures of
Seán Stewart.

Problem 89.1 . It is well known that it is possible to dissect a square into a finite
number of different squares, but that it is not possible to dissect an equilateral triangle
into a finite number of different equilateral triangles. Determine whether it is possible
to dissect an isosceles right-angled triangle into a finite number of different isosceles
right-angled triangles.

Solution 89.1. One example is shown below. Here an isosceles right-angled triangle
with common side length of 10 units is dissected into 6 different isosceles right-angled
triangles. The numbers in the triangles record areas.
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16
1

2

4
9

18

We also give a second example. Here an isosceles right-angled triangle with common
side length of 7

√
2 units is again dissected into 6 different isosceles right-angled triangles.

18
4

2 1

8

16

�

Stewart references a paper by Skinner, Smith, and Tutte (Journal of Combinatorial
Theory, Series B 80, 2000) for related results, and there are further publications and
internet resources available. He also asks what is the minimum number of triangles in
a dissection that answers Problem 89.1.

The second problem was solved by Daniel Văcaru of Pites,ti, Romania, Brian Bradie
of Christopher Newport University, USA, Seán Stewart, Henry Ricardo of the Westch-
ester Area Math Circle, USA, the North Kildare Mathematics Problem Club, and the
proposer, Toyesh Prakash. We present the solution of Brian Bradie (other solutions
were similar).

Problem 89.2 . Prove that
∫ π/2

−π/2
cos2(tanx) dx =

π

2
(1 + e−2).

Solution 89.2. With the substitution u = tanx and the half-angle identity

cos2 u =
1

2
+

1

2
cos 2u,

we have
∫ π/2

−π/2
cos2(tanx) dx =

∫ ∞

−∞

cos2 u

1 + u2
du

=
1

2

∫ ∞

−∞

1

1 + u2
du+

1

2

∫ ∞

−∞

cos 2u

1 + u2
du

=
π

2
+

1

2

∫ ∞

−∞

cos 2u

1 + u2
du.
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Now, ∫ ∞

−∞

cos 2u

1 + u2
du = Re

∫ ∞

−∞

e2ui

1 + u2
du,

and ∫ ∞

−∞

e2ui

1 + u2
du = lim

R→∞

∫

CR

e2ui

1 + u2
du

= 2πi Res

(
e2ui

1 + u2
;u = i

)

= 2πi× e−2

2i
=

π

e2
,

where CR is the contour (−R,R) ∪ {Reiθ : 0 6 θ 6 π}. Thus,
∫ π/2

−π/2
cos2(tanx) dx =

π

2
+

π

2e2
=

π

2
(1 + e−2). �

The third problem comes from Finbarr Holland of University College Cork. It was
solved by Seán Stewart, Daniel Văcaru, the North Kildare Mathematics Problem Club,
and the proposer. We present the solution of the problem club.

Problem 89.3 . Let ak and bk be positive real numbers with ak < bk, for k = 1, 2, . . . , n,
and let

rn(z) =

n∏

k=1

bk + z

ak + z
.

Prove that ∫ ∞

−∞

log|rn(ix)| dx = π
n∑

k=1

(bk − ak).

Solution 89.3. We will prove the result for n = 1; the general result then follows because
log |x| converts products into sums. Let r(x) = r1(x), a = a1, and b = b1.

Notice that

log |r(ix)| = log

∣∣∣∣
b+ ix

a+ ix

∣∣∣∣ = log

√
b2 + x2

a2 + x2
=

1

2

(
log(b2 + x2)− log(a2 + x2)

)
.

Integration by parts shows that the antiderivitive of log(a2 + x2) is

x log(a2 + x2) + 2a tan−1(x/a)− 2x.

Hence
∫ ∞

−∞

log|r(ix)| dx =
1

2
lim

R→∞

[
x log

(
b2 + x2

a2 + x2

)
+ 2b tan−1(x/b)− 2a tan−1(x/a)

]R

−R

.

The term involving the logarithm tends to zero at both limits, by L’Hôpital’s rule, so
we are left with∫ ∞

−∞

log|r(ix)| dx =
1

2

(
(2b− 2a)× π

2
− (2b− 2a)×

(
−π

2

))
= π(b− a). �

Editor’s remark : I added the assumption that ak and bk are positive to the problem,
which is necessary if the solution of the integral is to retain its present form. The
requirement that ak < bk is redundant. Finbarr points out that for real numbers ak
and bk (not necessarily positive), we have

∫ ∞

−∞

log|rn(ix)| dx = π
n∑

k=1

(|bk| − |ak|).
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We invite readers to submit problems and solutions. Please email submissions to
imsproblems@gmail.com in any format (we prefer LATEX). Submissions for the summer
Bulletin should arrive before the end of April, and submissions for the winter Bulletin
should arrive by October. The solution to a problem is published two issues after the
issue in which the problem first appeared. Please include solutions to any problems you
submit, if you have them.

School of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA,

United Kingdom
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