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The Golden section in the hypercube

QUANG HUNG TRAN

Abstract. We shall present a way to establish the Golden section in n-dimensional
Euclidean space. We use a hypercube covered by a hypersphere and divide the di-
ameters of two opposing facets in a way that depends on the dimension of the space.
The Golden ratio will be obtained from the ray connecting these two dividing points
intersecting the hypersphere.

1. Introduction

The Golden ratio ϕ =
√
5+1
2

is one of the most beautiful numbers. It has a long
history in many different areas of life such as Art, Nature, and Science; see [8, 9]. In
Mathematics, the Golden Ratio is mentioned early on, already appearing in Euclid’s
Elements; see [7], and it has been much studied throughout history; see [11]. In modern
Mathematical research, the Golden Ratio remains relevant to some problems, see [3,
10, 12]. In this paper, we introduce and prove our discovery about the occurrence of
the Golden ratio in n-dimensional Euclidean space associated with the hypercube [2, 6]
and the hypersphere [4, 5, 6].

Theorem 1.1 (Main theorem). Let N be a hypercube contained in n-dimensional Eu-
clidean space E

n (n ≥ 2). Let F0 be a facet of N with center K. Let F∗
0 be the facet

opposite to F0. Let S be a hypersphere centered at K and passing through all vertices
of F∗

0 . Let F1 be a facet of N that is perpendicular to F0. Let XY be a diameter of
F1. Let X∗ and Y ∗ be the reflections of X and Y through the center of N . Let Z and
Z∗ divide the segments XY and Y ∗X∗, respectively, in the ratio n− 2 to 1 i.e.

Z =
(n− 2)X + Y

n− 1
and Z∗ =

(n− 2)Y ∗ +X∗

n− 1
. (1)

Let the ray Z∗Z meet the hypersphere S at Z0. Then,

Z∗Z

ZZ0
= ϕ. (2)

Where n = 2, we have a configuration with square and circle; see Figure 1.
Where n = 3 we have a configuration with cube and sphere; see Figure 2.

2. Proof of main theorem

In this section, we give a proof of Theorem 1.1.

Proof. Let N = [−1, 1]n in the Cartesian coordinates of n-dimensional Euclidean space
E
n. Let K = (0, 0, . . . , 0,−1). Thus S is the hypersphere centered at K and goes

through vertex A0 = (1, 1, . . . , 1), so S has equation

x21 + x22 + . . .+ (xn + 1)2 = (1− 0)2 + (1− 0)2 + . . .+ (1− 0)2 + (1− (−1))2 (3)
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and

Z∗ =
(n− 2)Y ∗ +X∗

n− 1
=

(

−1,
n− 3

n− 1
,
n− 3

n− 1
, . . . ,

n− 3

n− 1

)

.

From these, the line ZZ∗ has parametric equation

X = Z∗ + t · −−→ZZ∗ =

(

−1− 2t,
n− 3

n− 1
,
n− 3

n− 1
, . . . ,

n− 3

n− 1

)

. (5)

The intersection of the ray Z∗Z (equation (5)) and the hypersphere S (equation (4)) is

the point Z0 = Z∗ + t0 ·
−−→
ZZ∗ (t0 > 0), where t0 satisfies the equation

(−1− 2t0)
2 + (n− 2)

(

n− 3

n− 1

)2

+

(

2n− 4

n− 1

)2

= n+ 3, (6)

which is equivalent to

(1 + 2t0)
2 = n+ 3− (n− 2)(n− 3)2 + 4(n− 2)2

(n− 1)2
. (7)

Therefore

(1 + 2t0)
2 = 5 (8)

or

t0 =

√
5− 1

2
=

1

ϕ
. (9)

Since Z0 = Z∗ + t0 ·
−−→
ZZ∗,

ZZ∗

Z∗Z0
=

1

t0
.

Hence equation (2) holds. This completes the proof. �
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