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Appealing once more to L3 we deduce that £(e) = 1.
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TORONTO SPACES, MINIMALITY,
AND A THEOREM OF SIERPINSKI.

Eoin Coleman?!

In this note we gather together some theorems in the literature
to resolve a problem suggested by P. J. Matthews and T. B. M.
McMaster in a recent article, [1]. We also make an observation
which allows one to deduce within ordinary set theory that neither
the real line nor the Sorgenfrey line contains a Toronto space of
cardinality the continuum (improving one of their results), and
we establish some relative consistency results. To conclude the
paper, we explain how a similar question arising from a theorem
of Sierpinski (can every subset of the unit interval I of cardinality
the continuum be mapped continuously onto I?) is independent
of ordinary set theory.

1. Toronto spaces and minimality

Matthews and McMaster ask whether there are any reasonable
set-theoretic assumptions which will enable one to prove or dis-
prove the assertion Qmin(x) where & is an uncountable limit car-
dinal. Recall that the assertion Qmin(x) says:

(a) neither T'(x) nor T(x) N T is supported by its weakly quasi-
minimal members,

and

(b) any subfamily of T(k) or T(k) N T, which does support the
whole family has more than k members.

T am very grateful to Dr Peter Collins for an invitation to present
this and related material to the seminar in Analytic Topology at the
Mathematical Institute, Oxford, in November 1996.
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First of all, we show the following:

Proposition 1.

(1) Every infinite Hausdorff topological space X containg an infi-
nite discrete subset.

(2) If k is a singular strong limit cardinal or k = Ny, then
the discrete topological space D(&) of cardinality & jg strongly
quasi-minimal and supports the family T(k)N Ty. In particular,
Qmin(x) is false. :

Proof: (1) Since X is infinite and Hausdorff, and the inter-
section of a finite number of open sets is open, it follows that
one- can choose a discrete Sequence {z, € X : p ¢ w} by
induction, Alternatively, apply. Zorn’s lemma to the family
§={Y :Y is a discrete subset of X'} partially ordered by incly-
sion, to obtain a maxima] element D which must be infinite.

(2) Trivially, the discrete space D(r) is strongly quasi-minimal,
Le. it is homeomorphic to each of its subspaces of cardinality &,
and hence it is weakly quasi-minimal too. A theorem of Hajnal
and Juhdsz, [2, 4 or 5], says that if « ig 5 singular strong limit
cardinal, then every Hausdi:arff. space X of cardinality at least x
has a discrete subset ¥ of cardinality x. If x = Ng, then part (1)
applies. In either eventuality, D(x) supports the family T(k)NTs,
since any bijection from D(x) onto V is a homeomorphism. So
Qmin(x) is false. m ' "

Proposition 1.2 covers a proper class of singular cardinals: for

any cardinal A, define -

Ky = SUP{f\,eX_p()‘),exp(exp()\)), .}

where exp()) = 22, Proposition 1.2 implies that Qmin(x, ) is false
for all A. Note however that every k) has countable cofinality,
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for all natural numbers m and k, where Ry is the cardinality of
the natural numbers. A relation of the form x = (k) is called
a positive partition relation, Weakly compact cardinals are often
defined as those cardinals & for which x —+ ()2 holds. We note
that k = (k)] implies & — ()7 for all n < w and X <& In
general, if an uncountable cardinal x satisfies a non-trivial posi-
tive partition relation, then « is a large cardinal, and its existence

cannot be proven in. ZFC (ordinary set theory). The reader can .

easily check that for example ¢ — (3)2 does not hold, where ¢ is
the cardinality of the real numbers (enumerate the set of rationals
Q={g :neuw} and for z < y € R, put

9({z,y}) = min{n: z < g, < y}).

The classic monograph of Erdds, Hajnal, Maté and Rado, [5],
provides detailed information on the partition caleulus.

Proposition 4. Suppose that  — (%)Z. If X is a first countable
Hausdorff space of cardinality &, then X has a discrete subset I
of cardinality . ‘ :

Proof: For each z € X, let {V(z,n) : n € w} be a shrinking
neighbourhood basis at z. Define a colouring f of the pairs of
elements of X as follows: ' ;

f({z,9}) = min{n : V(e,n) NV (y,n) = 0}.

Apply the partition relation to obtain an n and a subset D of X
of power & such that (Vz # y € D)(f({z,y}) =n), e Disa
~ discrete subspace, since : . : ’

(Vz € D)(DNV(z,n) = {z}). m

Next we turn to the Toronto space problem, [3]. A minor
improvement of a lemma from Matthews and McMaster allows
one to prove (as a theorem in ordinary set theory) that Qmin(c)
holds, where ¢ is the cardinality of the real numbers.

Lemma A*. [1, Lemma A] Suppose that  is an infinite cardinal,
X is a set of power k and ‘

(Ve < %)(S, is a subset of X of power ).
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Then there exists a subset Z of X of power & which does not
contain any S,. _ - .
Proof: Without loss of generality, we identify X with s and
assume that & is uncountable. Choose distinct elements zy and
yo in Sy. Given z, and z, in S, for @ < B < k, note that
83\ {Za,2a : @ < B} has power &, since § < &, and so one
can find distinct elements 3, 25 in S5 \ {Ta,%a : @ < B}. Put
Z = {24 ' @ < k}. Then Z has power &, and for all @ < &, Z does
not contain S, since z, € S, \ Z. =

The essential results of Matthews and McMaster now go
through without the assumption of regula.rlty:
Lemma C* [1, Lemma C]. Suppose that X is a Hausdorff space
of cardinality r all of whose subspaces have dense subsets of power
at most A, and k* = k. Suppose that

(Va < &)(S, is a subset of X of power &).

If Y is a subspace of X of power &, then Y has a subspace Z
which contains no homeomorphic copy of any Sa-,. . _

The Toronto problem, [3], asks whether it is possible to
have a Toronto space, i.e. an uncountable non.—dlscrete Haus-
dorff space which is homeomorphic to ea.qh of its uncountable
gubspaces. It is unknown whether thfe existence of a Toronto
space is consistent with ZFC. A counting arxgument sho_ws that
if X has hereditary density X and |X|* < 2/X|, then X is not a
Toronto space: there are 21%| subspaces of power |X|, but only
|X|* auto-homeomorphic images of X. . o
Corollary 5. There are no Toronto spaces of singular strong limi
cardinality. In particular, GCH implies that there are no Toronto

es of singular cardinality.
i’ii%ff If s isi singular strong limit cardinal, then every Bausdorﬁ
space X of cardinality & has a discrete subset of cardinality &, and
so X is not a Toronto space. ®
Corollary 6.

(1) Qmin(c) is true.
(2) The real line contains no Toronto space of power c.
(3) The Sorgenfrey line contains no Toronto space of power c.
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Matthews and McMaster, [1], proved the results 6.1 and 6.2
with the additional assumption that c is a regular cardinal. Sim-
ilar results can also be demonstrated for the natural analogues of
the real line in higher cardinalities
Corollary 7. Suppose that k — (k)2. If X is a first count-
able Hausdorff space of cardinality &, then X does not contain a
Toronto space of cardinality k.

Proof: By Proposition 4, every subspace of X of power & containg
a discrete subset of cardinality x. m

Corollary 6 enables one to show that if k is any cardinal
of uncountable cofinality, then there is a model of ZFC in which
Qmin(x) is true: for example, add x Cohen reals to L, the universe
of constructible sets (or more generally, to any model of ZFC
+ GCH). So Corollary 2 and Corollary 6 show that Qmin(x) is

independent of ZFC for any singular cardinal x with x > ci(k) >
w. 4

There is a general phenomenon at work behind Corollaries
2 and 6: suppose that P(}) is a property of cardinals for which
one can prove in ordinary set theory that P(c) is true but P(k)
is false for every singular strong limit cardinal f; then P(x) is
independent of ZFC for every singular cardinal & of uncountable
cofinality. .

Returning to the question of Qmin(k), what happens if an
uncountable cardinal x has countable cofinality? First of all, &
is singular. If & is a strong limit, then Proposition 1 says that
Qmin(k) is false. We do not know what happens if % is not a
strong limit, for example if x = ¥, < ¢ (where part of the difficulty
is that £°/(") > x (Koenig’s theorem)). Some additional partial
information can be gleaned from the papers of Hajnal and Juh4sz,
[6], and Kunen and Roitman, [7].

Finally, let us consider what one can prove if one removes
in the statement of Corollary 3 the assumption that there are no
inaccessible cardinals. In particular, is there a model of ZFC in
which Qmin(k) holds for some weakly inaccessible cardinal? The
following example provides a positive answer. :
Example 8. It is well-known that if there is a model of ZF(C
+ (Ix)(k is weakly inaccessible), then there is also a model M
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of ZFC + (c is weakly inaccessible) (for example, see [9]). By
Corollary 6, Qmin(c) holds in M, so that M. is a mOfiel of ZFC
in which Qmin(k) holds for a weakly inaccessible cardn_la,l ke
A defect of this example is that the weakly inaccessible cardi-
nal k which it exhibits is fairly small. To explain .what happens for
larger inaccessible cardinals, we require the notion of the spread
of a topological space. .
Definition. The spread of a topological space X is

sup{|D| : D is a discrete subset of X} + w.

We denote the spread of X by s(X) and say that the spread is
achieved if X has a discrete subset D of power s(X).

Hodel, [4], remarks the spread is achieved at those regular
limit cardinals & which are weakly compact, and hence all Hags—
dorff spaces in these cardinalities contain .discrgte subsets of size
k. As'in Proposition 1, it follows that Qmin(x) is false for weakly
compact cardinals, and there are no Toronto spaces of weakly
compact cardinality. This leads to a moldel of: ZFC + GCH +
(3x)(x is a regular limit cardinal and Qmin(x) is false:). > o
Example 9. Suppose that & is a weakly compact' cardinal.* T en
# is weakly compact in L, and since GCH holds in L, one obtains
a model of ZFC + GCH + (J&) (x is a weakly compact (regular
limit) cardinal and Qmin(k) is false). So while ZFC + GCH suf-
fices to determine that Qmin(x) is true for uncountable successor
cardinals and false for singular cardinals, it is not pqwerful er.lough
to settle whether Qmin(x) holds if  is an inaccessible cardinal.

We summarize the import of these examples:

rollary 10. _
8)3 Suppoie that x is a singular cardinal of !:mcountable cofinality.
Then Qmin(x) is independent of ZFC (ordinary set thepry).
(2) If there is a weakly inaccessible cardinal, then there.a isa quej
of ZFC in which Qmin(k) is true for some weakly inaccessible
cardinal k.

2 It suffices to suppose that x is a regular cardinal with the tree
property (i.e. there is no x-Aronszajn tree).
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(3) If there is a weakly compact cardinal k, then there is a model
of (ZFC + GCH + Qmin(x) is false). Note that k is weakly
inaccessible in this model.

Jensen, [8], has shown that if the axiom of constructibility
(V = L) holds, then for each regular limit cardinal A which is
not weakly compact, there is a Hausdorf linearly ordered space
of power A in which the spread is not achieved. We do not know
whether V' = L determines which truth value Qmin()) has in
this case, nor what this truth value may be. And of course, it
may still be a theorem of ZFC that Qmin(x+) is true for every
infinite cardinal k. (The reader curious about future progress
on these problems can consult the Topology Atlas, located at
http://www.unipissing.ca/topology)

2. A theorem of Sierpinski

Next, we turn to a theorem of Sierpiniski, [11]: there exists an
uncountable subset P of the unit interval I such that I is not
a continuous image of P. In his classic work, [10], Kuratowski
notes on page 428: “Without the continuum hypothesis, however,
we are unable to prove the existence of a set P of power ¢ such
that the interval is not a continuous image of P.” We explain in
detail how to use Martin’s Axiom (MA) to prove the existence of
such a set P. In fact this result follows from a weaker hypothesis:
R is not the union of less than ¢ many nowhere dense sets. This
hypothesis is true for example under Martin’s Axiom for countable
partial orders, [12], or for a slick proof, see [13, Theorem 16.1].
Arnold Miller constructed a model of ZFC in which c = Ny and
every subset of I of cardinality ¢ can be mapped continuously
onto I. Thus whether every subset of I of power ¢ can be mapped
continuously onto I is independent of ordinary set theory.

To make the arguments fairly self-contained, we recall some
definitions and standard results which can be found in the text-
book [10]. A set A has the Baire property in the space X iff there
is an open set G such that A\ G and G \ 4 are of first category
(meagre, or, a countable union of nowhere dense sets). An equiva-
lent characterization is that 4 = (G'\ N)UM where G is open and
N and M are of first category. So open sets and closed sets have
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the Baire property (every closed set is the union of its interior and
its boundary (which is always nowhere dense)).

Lemma 11. [10, section 24, I, Theorem 3, p.256]. Every family
of disjoint sets {X; : ¢ € I'} with the Baire property, of which none
is of first category, is countable.

The next lemma is a special case of a more general result.
The proof is copied from that of the analogous result for Nl_ in
[10], introducing the necessary modifications to avoid assuming
the regularity of the continuum c.

Lemma 12. Assume that R is not the union of less than ¢ many
nowhere dense sets. Suppose that {E.z : a, 8 < ¢} is a sequence
of subsets of the unit interval I with the Baire property. If 8 < '
implies that Eq 3 N Eq g = @, then there exists a sequence of
distinct ordinals {y(a) : a < c} such that |I\ UsccEqry(o)| = ¢
Proof: We define by induction on o < ¢, an ordinal ¥(e), and an
element p, € I, as follows. Note first that by Lemma 11,

(Va < ¢)(38a) (VB > Ba)(Eag is of the first category).

Fix a < ¢. Suppose that we have defined {v(£),p¢ : £ < a}. Since
the sets E,g are disjoint for different 3,

{6> B : (V€ < a)(pg € (T\ Eos))}
has power c, and so
(Fr(@) > Ba)(V€ < a)(7(a) # 7(€) and p¢ € (I\ Eay(a)))-
Observe now that {Eg.(s) : € < @} is a family of less than ¢ many

sets of first category. We have assumed that R (and hence I) is
not the union of less than ¢ many nowhere dense sets, therefore

I\ (Ue<aBey(g) U Ve<alpe}) # 0,
since a < c; take

Pa € I\ (UegaBey(e) Ule<a{pe}),
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and let P = {p, : &« < e}. If £ < @, then Pt # Do, and hence
|P| =c¢. Also
(Va < e)(PN Eoayiw) = 0,
60
P C I\ UaccEnya)
and hence

|I \ U0£<C-Eary(a)| =c. #

We remind the reader that if f is a real-valued continuous
function defined on a subset A of R, then there exists a continuous
extension of f to a Gs-set (a countable intersection of open sets).
This follows from Theorem 1 in section 35, I, in [10]. And we
remark that if @ is the family of real-valued continuous functions
defined on Gg-subsets of I, then % has cardinality c.

Theorem 13. Assume that R is not the union of less than ¢
many nowhere dense sets. Let F be a family of at most ¢ many
uncountable subsets of the unit interval 1. Then there exists a
subset P of I of cardinality ¢ such that no element of F is a
continuous image of P.

Proof: By the previous remark, for each ¥ € F, there are at most
¢ many continuous real-valued functions f defined on Gg-subsets
of I with ¥ C range(f). Since F has cardinality ¢, and ¢? = ¢, we
can list all the pairs (Y] f) such that f is a real-valued continuous
function defined on a Gj-subset of I with ¥ C range( f),in a list
of length ¢: A = {(Yy, fa) : @ < €}. We can also enumerate
(possibly with repetitions) each set Y, = {yo5 : 8 < c}. Let
Eag = [ l(yuﬁ). Since f, is continuous, it follows that Eug is
closed and hence has the Baire property. Furthermore, for 8 < 3,
Eas M Eag = 0. Now we can apply Lemma 12 to the family
{Bap : @, 8 < c}, to obtain a sequence {y(a) : @ < c} and a set
P of cardinality ¢ disjoint from every Eor(a)

It remains to show that no ¥ € F is a continuous image of P.
Suppose (towards a contradiction) that g is a continuous function
and Y C g[P]. As we noted after Lemma 12, there is a continuous
extension g* of the partial function g|P to a Gs-subset of I. So
Y C g[P] C g*[P]. Hence the pair (Y, g%) must appear in the list

we have

A as some pair (¥, fa) for some ¢ < ¢. Since PN Egpya) = 0,

Fn f;l(ya'y(a)) =0,

SO Yay(a) does not belong to f,[P], and so
Yarv(a) € Yo\ for[P] - Y\Q[P],

which contradicts ¥ C g[P]. This completes the proof. =
Corollary 14. Assume that R is not the union of less than ¢
many nowhere dense sets. Then there exists a subset P C I of
cardinality ¢ such that 1 is not a continuous image of P.

Proof: Let F = {I} in Theorem 13. =

Corollary 15. Martin’s Axiom (or Martin’s Axiom for count-
able partial orders) implies that there exists a subset P C I of
cardinality ¢ such that I is not a continuous image of P.

In his paper [14], Miller constructed a model of ZFC using
forcing in which every subset of power c of I can be mapped
continuously onto I. In his model, ¢ = Ry. As of writing, it is an
open question® whether there is a model of ZFC in which ¢ > R
and every subset of power ¢ of I can be mapped continuously onto
1

Our last theorem concerns totally imperfect subsets of real

numbers. A totally imperfect subset of R is one which contains
no non-empty perfect set. A set E C R is perfect iff £ is closed
and contains no isolated points. In section 40 of [10], Kuratowski
proved that there exists an uncountable (totally imperfect) set
P C I each of whose continuous images (situated in I) is a totally
imperfect set.
Theorem 16. Suppose that R is not the union of less than ¢
many nowhere dense sets. Then there exists a (totally imperfect)
set P C I of cardinality ¢ each of whose continuous images is a
totally imperfect set.

3 Information kindly supplied by Professor Arnie Miller. The inter-
ested reader can find some of his papers and a list of problems on his
website at: http://math wisc.edu/miller
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Proof: Let T be the family of non-empty perfect subsets of L
Recall that ¥ and every uncountable perfect set have cardinality
c. Now apply Theorem 13 to F. &

Corollary 17. Martin’s Axiom (or Martin’s Axiom for countable
partial orders) implies that there exists a set P C I of cardinality
¢ each of whose continuous images is a totally imperfect set.

Of course, in Miller's model of ZFC mentioned above, these
conclusions are false. So the question whether there exists a set
P C T of cardinality ¢ each of whose continuous images is a totally
imperfect set is again independent of ordinary set theory.

Further generalizations of these results to second-countable
complete metric spaces are also possible.
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