follows that (X,T) is not locally connected (at x).
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NONCOMMUTATIVE ANTICOMMUTATIVE RINGS

Siephen Buckley and Desmond MacHale

An associative ring R is said‘to be anticommutative if
Xy + yx = 0 for all x,y ¢ R. If R has characteristic 2, then
the concepts of commutativity and anticommutativity coincide,
but Z,, with the usual aédition and trivial multiplication,
shows that an anticommugétive ring need not have characteristic
2. / '

If a ring R satisfies x? = 0 for all x € R then clearly
R is anticommutative, but not conversely. However, if R is
anticommutative it is easy to verify that R satisfies each of
the following identities,

(i) 2x? = ¢ (ii) (xy - yx)? = ¢ (iii) x%y - yx? = 0,

Frequently, when looking at commutativity theorems for
rings, one requires counterexamples to show that certain con-
ditions are not sufficient for commutativity, For example,
if (xy)? = x?y? for all X:.y € R and either of the following
conditions holds then R is commutative:

{a) R has unity; (b) R has no non-zero

nilpotent elements.

To show that some such additional condition is necessary,
it is enough to produce a non-commutative ring in which x? = ¢
for all x € R, In this note, for finite rings, we pose the
question, *what is the order of & shallesc noncommutative anti-
commutative ring?” and show that the answer is 27, Since
this number is odd, we see that it is also the answer to the

question, "what 1s the order of a smallest noncommutative ring

satisfying the identity x? = g2,




First of all we produce a ring of order 27 with the des-
(aij) be the ring of those 4x4 mat-
=0 if j s i,

ired properties. Let A =
rices with entries in the field 2,, such that aij

a,; = 0, a,, = a,; and a;, = -3;,- Then it is easily checked

that R is a noncommutative anticommutative ring of order 27.
In more abstract terms, R can be expressed as follows: 1if Cn

is the cyclic group of order n and © denotes the direct sum

of groups, then (R,+} = C; @ C, ©C, = <a> @ <> ® <c>, where

cb = 0, ab = c determines

a? = b? = ¢c? = ac = bc = ca = -ba =

the multiplicative operation in R.

We proceed to show that no ring of ofder less than 27
can be both noncommutative and anticommutative, so let R be
a ring with these properties. ‘since every finite ring is
the direct sum of rings of prime-power order and since a direct
sum of rings is anticommutative if and iny if each of its
direct summands is anticommutative, we may confine our att-

ention to rings of prime-power order. ‘If {R,+) is cyclic,

then R is commutative - this eliminates rings of prime order
and if |R| = p? for some prime p, we may assume (R,+} =Cp® Cpe
Clearly, we may also eliminate rings of characteristic 2.

Thus we need only consider the following values of |R| with

corresponding structures for (R,+}:
(1) |r| = 8, (R,+) = C, @ C_;
(ii) |R| = 9, (R,+) = C, @ C;
(iii) |R| = 16, (R,+) = C, ® Cy, C, ® C; ® Cy, C, @ Cy;
(iv) |R] = 25, (R,+} = C5 @ Cq.

We can eliminate 9 and 25 using the following result.

LEMMA. If p is an odd prime, then.Cp ] Cp cannot be the add-

itive group of a noncommutative anticommutative ring.

Let R be a counterexample and let (R,+} = ¢a> @ <b>.

= 0 for all x € R, so
0 =

PROOF .
Since R is anticommutative, x.x + xX.X

x? = 0, since |R| is odd. If ab = 0 then ab + ba =
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!
|
3

ba = 0 =

ab, so R i iy
o , 1s commutative, a contradiction. Suppose
ab = ra + sb where r,se z Then a’b = z
sab = 0, and so s = 0 Fin llp ot
=0, ally ab = ra, so ab?
= rab = 0

which gives ab = 0, a contradiction.
Next, we suppose that (R,+} = C, @ é
) 4
R = <a> @ <b>, where b has order 4 or g
2ab = (2a)b = 0, so 2ab = ab + ba,
case (R,+) =C, ® C, @
§

or C, @ C, and
In either case,
' and R is commutative. The
ve ate 1ott wrin i € Cu.lé ?1smissed in a similar manner.
@0551b111ty that (R,+} = ¢, @ ¢
that (R,+) = <§> ® <b> where 4a = 4 = 0 : .
case where a? = p? . g, R

Suppose
Consider first the

Then we get a contradiction,
Thus we

the proof of the lemma -
. May assume that one generator
2a? = 0 2
- » a“€ {2a,2b,2
j :et of elements of order 2 in R. Suppose fir;t éhaEZbZ'
an et ab = ra + o
sb, Then 2ab = a’b = a(ab) =
This gives (sr)a + s{s-2)b = 0
r is even.
order 2 and so R is commutative,

and ab = Then abz -

(a say) satisfies a? £ 0, Since

where r,s ¢ z,.

2
ra® + sab = 2ra + sab.

s is even and if s £ 0 Hence
) This implies that

ab has
a contradiction.
{ab)b =

2a, a contradiction.

ra, r = %7, Thus s = 0

2ab? = a(2b?) = ¢ =

rab = r?z = a, so

Fi
inally, we may Suppose that a? = 2b, since if a?

we may replace b in the basis by a+b If S

{rs)a + (2r+s?)b = o0, :

also, so ab has order 2,

2a+2b
o ' ab = ra + sb, we get

Us s 1s even and if s ¢ 0, r is even
a contradiction.

2 2 . Hence s = 0
L +s° =0, r is even, 2ab = ; SO

0 and we are finished,
Let S be the rin
g of order 32 where {
e ' ' S,+}) = ¢a> @ ¢h>
s @ Cy, with a? = 4a, p? = 2b, ab = -ba = 23 Then §

non i i ; ' s ‘

commutative anticommutative ring of order a ,
By our previous analysis, . R
addition,

oo S is a smallest such 2-ring and in
e a sTallest such ring of even order. Finall
ve that S is a smallest ring of the desired t .

that (S,+} is a 2-generator group.

Ype such
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