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where N(s,n) is the number of occurrences of s in the first n digits of .
Because of this, the digits of 7 are sometimes used in algorithms to generate
sequences of random numbers.
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Topological Equivalents of
the Axiom of Choice

S.D. McCartan

Recall that, within the terms of Von Neumann-Bernays-Gddel set theory,
one form of the axiom of choice (abbreviated AC) is stated as follows:

If {X; : i € I} is a non-empty disjoint family of non-empty sets,
then there exists a set C such that CN X; is a singleton for each
t€ 1.

The axiom of choice has become virtually indispensable in mathematics since
a large number of important results have been obtained from it in almost
all branches of the subject without leading to a contradiction. However, al-
though this axiom is consistent with, yet independent of, the other axioms of
set theory, its status has long been a source of controversy and not all mathe-
maticians are willing to accept it. Perhaps the principal appeal of the axiom
of choice resides in the extensive list of its logical equivalents which exist in
apparently disparate areas of mathematics. A fairly comprehensive dossier of

~ these was compiled by the Rubins [4] in 1963.

Most topologists side with the majority of mathematicians, assume the
axiom of choice, and do not hesitate to use it whenever necessary. Indeed
some would argue that the following proposition (usually known as Tychonoff’s
theorem) constitutes the single most important result in general topology:

The product of a family of non-empty compact topological spaces
is compact.

~ The point here is that Tychonoff’s theorem is logically equivalent to the axiom

of choice (see [3]). In this note some other such topological equivalents are

. introduced.

Classically a topological space (X,7) is said to be a Tp-space (T1-space) if

and only if for every pair of distinct pointsin X there exists a 7-neighbourhood

of one which does not contain the other (exist r-neighbourhoods of each which
do not contain the other). Properties like Ty and 73, when possessed by a
topological space, essentially express a degree of separation enjoyed by the
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points in the s‘pace A non-empty subset Y of space (X, 7) is said to be dense (iii) implies (). Replace the word “dense” by “codense” throughout the
(codense ) if and only if there exists no non-empty 7-open (r-closed) subset H g  argument above.

of X such that Y N H is empty. Let us call Y thick if and only if there exists 5
no non-empty 7-open and r-closed subset H of X such that ¥ N H is empty.  However, DT} and CT; are false.
Evidently if Y is either dense or codense then it is thick. : é

Given some topological invariant property P, consider the following state- } Example Let X be the set of real numbers and consider the nested topology
ments: r={GCX:G=/(q, oo) a € X}U {0, X} (where {a,00) denotes the interval

(M P) every topological space (X, 7) has a subspace (Y, 7|Y) (where 7]V is {-’0 €X:a< x}) It is immediate that any subspace of (X,7) is nested,
the relativization of 7 to Y), with property P, which is maximal (with respect = that any 71 subspace is therefore a singleton and bounded, whereas any dense
to inclusion); (codense) subspace is unbounded above (below). Observe that any amgietgn

(DP) every topological space (X, 7) has a subspace (¥, 7|Y'), with property subspace is a maximal Tl subspace which is neither dense nor codense.
P, which is dense (in (X, 7));

(C'P) every topological space (X, 7) has a subspace (Y, 7|Y"), with property
P, which is codense (in (X, 7));

(TP) every topological space (X, 7) has a subspace (Y, 7|Y), with property
P, which is thick (in (X, 7)).

It is clear that either of DP or C'P implies TP. Schnare (5] showed that .

In view of the equivalences obtained by Schnare, if T, is any hereditary
invariant property lying in logical strength between Ty and T} (including those
separation axioms discussed in [1] and [2]), it is tempting to conjecture that
| MT, is equivalent to AC. So far this remains an open question. Although
. DT, implies DT, and CT, implies CTy, so that, by Theorem 1, each implies

< e abov est (f i
MTy and MTy are each equivalent to AC, and, here, his results are used to ﬁgét%esti );11221 than ;osete{ll ::; tg;;ngﬂ d C(.:,Si ilekfig:n g::;m%ym?gg}; dai"fj
confirm that the same is true for DTy and CTo. l that a space is called a Tgs-space if and only if every singleton subset is either

Theorem 1 The following statements are equivalent: ~ open or closed), in the example, every Ts-subspace is at most a doubleton
(i) AC . - while, indeed, every doubleton subspace is a maximal Tgg-subspace which is
(i) DT, _ neither dense nor codense. That is, for instance, DTgs and CTgg are false.

(iil) CTh. On the other hand, we have:

Proof ‘(i) implies (ii). Let (X, 7) be any topological space so that, by hypoth- Theorem 2. The following statements are equivalent:
esis and [5], there exists a maximal T, subspace (Y, 7]Y). Then Y is dense in (i) AC

(X, 7), otherwise there exists a T-open subset [ (of X') which is disjoint from (”') TT,
'Y and contains a point z, so that, since {z} is 7|Z-open, the subspace (Z,7|2)

is Ty, thereby contradxctmgj the mammahty of Y (where Z =Y U {z}). | quf Since AC implies MTl’ .a,nd TTh unphes'TT? implies TTo, it only
(1) implies (ili). Replace the word “dense” by “codense” and the word | [omains t‘o ve.rlfy tha‘% MT; implies TTy and TTO implies AC.

“open” by “closed” throughout the argument above. 1 MTy lmpl‘ies TTY: Lfat (X, 7) be any topological space 50 tha,?, b%’ hypoth-

(i1) implies (i). Let {X; : 7 € I} be a disjoint family of non-empty sets, let* S, tﬁere exists &_l. maximal Ty subspace (Y, r|Y). Then Y is th_xck e (X’ T)’

= (X € T}, and consider the partition topology . otherwise there exists a 7-open and 7—clo§ed subse.t H (of X) which is disjoint

from Y and contains a point z, so that, since {z} is 7|Z-open and r|Z-closed,

r={GCX:GNX;#0implies X; C G}  the subspace (Z,7|Z) is Ty (where Z =Y U {z}), thereby contradlctmg the

= maximality of Y.
If (Y, 7|Y) is a dense Ty subspace of (X, 7), then, by its density, Y meets each =~ 77p implies AC: Repeat the argument of (ii) implies (i) in Theorem 1,
X; but, since Y is Tp, in exactly one point. - with the word “dense” replaced by “thick”.
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Remarks It is interesting to contrast and compare M P, DP, CP and TP
for a general invariant P. For example, if P is “connected”, M P is true
(since, as is well known, the maximal connected subspaces are the connected
components), DP is false (since, as is well known, the closure of a connected
subspace is connected), CP is false (since each connected subspace of a dis-
connected space, being contained in a component, is therefore disjomnt from
any other (closed) component) and TP is false (since each connected subspace
of a locally connected disconnected space, being contained in a component, is
therefore disjoint from any other (open and closed) component).
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HISTORY OF MATHEMATICS

The Culmination Of A Dublin
Mathematical Tradition

On The Maxwellian Struggle For A New

. Mathematical Physics And The Birth Of Relativity

N.D. McMillan

This paper is to celebrate the centenary of the Hertz Exporimatum Crucis
that proved the FitzGerald electromagnetic theory of radio transmission.

Fitzgerald And The Electromagnetic Description
of Light Propagation.

FitzGerald’s chosen field of study in Dublin University for his Fellowship exam-
inations in the period 1871-1877 was MacCullagh’s mathematical researches.
This study perhaps uniquely prepared him to comprehend the full significance
of James Clerk Maxwell’s development of an electromagnetic theory of light
in 1865, which had until 1879 remained largely ignored, except for a handful
of “electricians” from outside of the establishment of science and engineering.

FitzGerald and his uncle George Johnstone Stoney in Dublin, were the first
mathematicians from the established universities to see Maxwell’s work as the
departure point for a programme of mathematical researches that would pro-
vide a unifying theory for physics. If successful of course, such a unified theory
would have also established Cambridge and Dublin at the unchallenged head
of developments in British science. There was at the time a determined ide-
ological challenge to the scientific leadership based on the mathematicians in

This article is an abridged version of a longer, fully referenced article. Copxes of the
latter can be obtained from the author.
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